
 

 

 

A Report submitted in partial fulfilment of the 
regulations governing the award of 

the Degree of 
BSc (Honours) Ethical Hacking for Computer 

Security 
at the University of Northumbria at Newcastle. 

 

Project Report 
 

Nettynum 

A Windows Domain Enumeration Tool 

 

Oliver Morton 

10005202 

 

2013/2014 

 

Software Engineering Project 

 

 

 





 

DECLARATIONS 

 

I declare the following: 

 

(1) that the material contained in this dissertation is the end result of my own work and that 

due acknowledgement has been given in the bibliography and references to ALL sources be 

they printed, electronic or personal. 

 

(2) the Word Count of this Dissertation is: 19,103 

 
(3) that unless this dissertation has been confirmed as confidential, I agree to an entire 
electronic copy or sections of the dissertation to being placed on the eLearning Portal 
(Blackboard), if deemed appropriate, to allow future students the opportunity to see examples 
of past dissertations.  I understand that if displayed on eLearning Portal it would be made 
available for no longer than five years and that students would be able to print off copies or 
download.   

 
(4) I agree to my dissertation being submitted to a plagiarism detection service, where it will 
be stored in a database and compared against work submitted from this or any other School 
or from other institutions using the service.   
 
In the event of the service detecting a high degree of similarity between content within the 
service this will be reported back to my supervisor and second marker, who may decide to 
undertake further investigation that may ultimately lead to disciplinary actions, should 
instances of plagiarism be detected. 

 

(5) I have read the Northumbria University/Engineering and Environment Policy Statement on 

Ethics in Research and Consultancy and I confirm that ethical issues have been considered, 

evaluated and appropriately addressed in this research. 

  

SIGNED: 

 

 

 





Acknowledgments 

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 1 
 

Abstract 

Enumeration is a key aspect of any computer security testing methodology. As many 

internal networks utilise a Windows domain it is important to know the information 

an attacker may be able to obtain by enumerating this domain. Existing tools require 

a significant amount of direction and information from the user to effectively gather 

pieces of information. There is a need for a tool which can operate independently of 

the user to free them to carry out other tasks. An object orientated design 

methodology is selected and applied in Unified Modelling Language (UML) to design 

a product to fill this gap. The Python programming language is used to implement 

the designs creating a functional product which is verified through Alpha testing in a 

virtual environment against the requirements specification and project objectives, 

and Beta testing by industry professionals. The paper concludes with a critical 

evaluation of the product and project process, followed by recommendations for 

future work both for this tool and other work in the same problem area. 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 2 
 

Contents 

1 Introduction ........................................................................................................... 5 

1.1 Aims, Objectives and Approach ...................................................................... 5 

1.2 Product Overview ............................................................................................ 6 

1.3 Problem Context ............................................................................................. 7 

1.4 Tools and Techniques ...................................................................................... 7 

2 Literature Review ................................................................................................... 9 

2.1 Defining Enumeration ..................................................................................... 9 

2.2 Services to Enumerate .................................................................................... 9 

2.3 Existing Tools ................................................................................................. 11 

2.3.1 Microsoft RPC Endpoint Mapper (MSRPC) ............................................ 11 

2.3.1.1 epdump ........................................................................................................ 11 

2.3.1.2 RPCDump.py ................................................................................................ 11 

2.3.1.3 RPCDump.exe ............................................................................................... 12 

2.3.2 NetBIOS Name Service (NBNS) .............................................................. 13 

2.3.2.1 net view & nltest .......................................................................................... 13 

2.3.2.2 netviewx ....................................................................................................... 13 

2.3.2.3 nbtstat .......................................................................................................... 13 

2.3.2.4 nbtscan ......................................................................................................... 14 

2.3.3 Server Message Block (SMB) ................................................................. 14 

2.3.3.1 net view, nltest & req ................................................................................... 14 

2.3.3.2 Dumpsec ...................................................................................................... 15 

2.3.3.3 Enum ............................................................................................................ 15 

2.3.3.4 rpcclient ....................................................................................................... 15 

2.3.3.5 Enum4Linux .................................................................................................. 16 

2.3.3.6 NetE .............................................................................................................. 16 

2.3.3.7 NBTEnum...................................................................................................... 16 

2.3.3.8 user2sid & sid2user ...................................................................................... 17 

2.3.3.9 NSlookup ...................................................................................................... 17 

2.3.4 Summary ................................................................................................ 17 

3 Commentary on Requirements Specification ...................................................... 20 

3.1 Requirements ................................................................................................ 20 

3.1.1 Essential ................................................................................................. 20 

3.1.2 Desirable ................................................................................................ 20 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 3 
 

3.1.3 Excluded ................................................................................................. 20 

3.2 Design Methodology ..................................................................................... 21 

3.2.1 Methodologies ....................................................................................... 21 

3.2.1.1 Functional Decomposition ........................................................................... 21 

3.2.1.2 Data Flow Design ......................................................................................... 21 

3.2.1.3 Data Structure Design .................................................................................. 22 

3.2.1.4 Object Orientated Design ............................................................................ 22 

3.2.1.5 Selection ....................................................................................................... 22 

3.2.2 Unified Modelling Language .................................................................. 23 

3.2.3 Design Patterns ...................................................................................... 24 

3.3 Security Development Lifecycle .................................................................... 24 

3.4 Language Choice............................................................................................ 26 

4 Analysis Models and Design Specifications ......................................................... 29 

4.1 Use Cases ....................................................................................................... 29 

4.2 Sequence Diagrams ....................................................................................... 29 

4.3 Class Diagrams ............................................................................................... 30 

4.4 Output Format............................................................................................... 31 

4.5 Structure of Data ........................................................................................... 32 

4.6 Authentication Design ................................................................................... 33 

4.7 Design Patterns ............................................................................................. 36 

5 Product Code ....................................................................................................... 37 

5.1 Standards ....................................................................................................... 37 

5.2 Built ............................................................................................................... 37 

5.3 Problems ....................................................................................................... 42 

6 Testing .................................................................................................................. 43 

6.1 Methodology ................................................................................................. 43 

6.2 Test Bed ......................................................................................................... 43 

6.3 Tests .............................................................................................................. 44 

6.4 Results ........................................................................................................... 45 

6.5 Testing Conclusions ....................................................................................... 47 

7 Evaluation ............................................................................................................ 49 

7.1 Evaluation of the Product ............................................................................. 49 

7.2 Evaluation of the Project Process ................................................................. 51 

7.2.1 Achievement of Relevant Objectives ..................................................... 51 

7.2.2 Suitability of Tools and Techniques ....................................................... 52 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 4 
 

7.2.3 Managing Project Work ......................................................................... 53 

7.2.4 Personal Performance and Problem Handling ...................................... 54 

7.2.5 Project Plan Reflection ........................................................................... 54 

7.2.6 Legal, Ethical and Professional Issues .................................................... 55 

7.3 Recommendations ........................................................................................ 55 

7.4 Conclusions.................................................................................................... 56 

8 References ........................................................................................................... 57 

9 Appendices ........................................................................................................... 60 

Appendix A: Terms of Reference 

Appendix B: Software Requirements Specification 

Appendix C: UML Designs 

Appendix D: Testbed Configuration 

Appendix E: Testing Results 

Appendix F: Beta Testing Feedback 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 5 
 

1 Introduction 

1.1 Aims, Objectives and Approach 

The aim of this project is to develop an enumeration tool that discovers information 
from a Windows domain and stores information that could be used during 
subsequent runs of the application.  

This will be accomplished by fulfilling the following nine objectives which also dictate 
the approach to be taken during the project: 

1. To perform a literature review encompassing existing tools, useful 
information that can be enumerated, methods of enumeration.  

In order to fully understand the problem area a literature review will be undertaken. 
This will include defining enumeration with particular regard to information 
gathering, identifying services that allow information to be enumerated, and existing 
tools. The existing tools will be considered in terms of the services they enumerate 
information from, the particular information they are capable of retrieving, and the 
degree to which they are automated. 

2. Create a list of requirements for the tool based on the literature review. 

Following the literature review (and using the information gathered), a list of 
requirements will then be created. These requirements will help to ensure that the 
tool that is created meets the needs of the problem area and learns from the 
features of existing products. The software requirements specification will dictate 
essential, desirable and excluded requirements as well as describing the interfaces 
from the product’s perspective, the intended user characteristics, assumptions and 
dependencies.  

3. Enhance knowledge of the Windows API 

At the start of the project the author has a limited knowledge of the Windows API, 
however, because of the nature of the project, a detailed knowledge of the Windows 
API is required. Therefore one of the objectives of this project is to enhance the 
author’s understanding of the API functions so that they might be efficiently utilised 
to meet the requirements of the application. 

4. Enhance skills in the selected development language. 

During this project a suitable development language will be selected. The author has 
experience with several languages that may be appropriate, however the scope of 
this project will require additional skill in the chosen development language. For this 
reason the requirement to enhance the author’s skills in the selected development 
language has also been included in the objectives of the project. 

5. Create design diagrams for structure and behaviour of the application. 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 6 
 

An appropriate design methodology will be selected and used to create design 
diagrams which describe the structure and behaviour of the application which will 
meet the requirements specification.  

6. Implement the designs in the chosen development language utilising a 
source code management solution and following the MS SDL. 

The design diagrams will then be implemented in the selected development 
language using the source code management solution Git to maintain an offsite 
backup as well as full revision history (Chacon, 2009). The Microsoft Secure 
Development Lifecycle will be followed to aid in creating a secure product by 
considering security concerns throughout the project’s lifecycle. 

7. Develop and carry out a plan to test the application against the 
requirements specification. 

In order to determine the extent to which the application meets its requirements a 
suitable testing strategy will be employed which tests the application at every level 
between unit and acceptance. 

8. Undertake an analysis of the results of the testing to identify functional and 
non-functional results. 

Once the testing has been performed the results will be analysed to identify the 
functional and non-functional elements of the application, which will indicate its 
fitness for purpose. 

9. Generate user documentation for the application. 

The final objective is to create user documentation for the application. This must be 
accurate and detailed but easy to understand by a new user. 

1.2 Product Overview 

The purpose of the proposed tool is to enable computer security professionals to 
identify the information an attacker may be able to gather from the Windows 
domain so preventative action can be more precisely targeted. In particular this tool 
is intended to be used during internal security assessments to maximise information 
discovery to inform other areas of the assessment. There is a large amount of 
information that can be enumerated from the Windows domain including the 
domain accounts policy which dictates the lockout threshold and duration, groups 
and group membership which are used to restrict permissions, and user account 
information.  

The application should be designed to require as little input from the user as possible 
in order to free them to continue with other tasks. A key feature will therefore be 
automated operation; starting from zero knowledge of the domain or network the 
application should find the domain name and controller and enumerate all possible 
information. The user should also be able to target the automated enumeration to 
restrict the application’s operation, for example the user could supply the domain 
name and domain controller in order to prevent these from being enumerated, 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 7 
 

causing the application to skip forward to the enumeration of information from the 
domain controller. 

While the focus of this tool is on automated operation, there is always the possibility 
that the user will need to enumerate a specific piece of information. Therefore the 
application is able to be manually directed to retrieve one piece of information, such 
as a list of group members. 

Since the purpose of this product is to increase the ease with which an assessment 
can be conducted the output format is an important characteristic. It must be human 
readable but also easy to parse by other scripts, this is so that the information that 
has been gathered can be immediately understood by the user and quickly fed to 
other tools to continue with the assessment. 

1.3 Problem Context 

The Microsoft Windows operating system is extremely ubiquitous in both home and 
corporate environments to a point where it has been “determined Microsoft had a 
monopoly in the market” (United States v. Microsoft - Review of the Final 
Judgements by the United Steates and New York Group, 2007). 

A large amount of information can be enumerated from a Windows based network 
including: domain controllers, services running on hosts, logged on users, installed 
software, shared resources, user groups, policies, user rights, and user information 
(McClure, et al., 2009). This information may appear harmless, however it can lead 
to a complete compromise of the network and should therefore be eliminated from 
the network (McClure, et al., 2009). 

A number of services can be used to gather this information from a Windows domain 
and several tools exist to gather specific pieces. However during the author’s time in 
industry it was found that several of these tools were required to be used in 
succession to retrieve the required information and each required some level of 
direction from the user. 

The application will be targeted at security professionals who need to discover what 
information can be enumerated from their own, or a client’s, system.  

1.4 Tools and Techniques 

In order to meet the objectives of the project a number of tools and techniques will 
be used. 

Throughout the project the Microsoft Secure Development Lifecycle (MS SDL), will 
be followed to help ensure that the application produced is as secure as possible. 

At the design phase an object orientated design methodology will be applied using 
the Unified Modelling Language (UML) to create designs of an application that meets 
the specified requirements with advanced notions of object orientation including 
polymorphism and inheritance. A number of design patterns will be applied where 
appropriate to solve problems that commonly occur within software engineering as 
they are proven and accepted. 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 8 
 

These designs will be implemented in the Python programming language which 
supports object orientation and will later be shown to be a suitable choice for this 
project. During the implementation phase Git will be used to manage the source 
code of the project, providing offsite backup and full revision history.  

In order to test the application a virtual environment will be configured that 
represents the core of a Windows domain, namely the domain controller. Using 
virtual machine software two Windows servers will be installed and configured with 
the active directory service to create two domain controllers for a single domain. 

The application will be tested against the requirements specification and designs to 
identify any errors within the code using an appropriate testing strategy that 
employs unit, integration, system and acceptance testing through a manual and 
automated approach. 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 9 
 

2 Literature Review 

2.1 Defining Enumeration 

There are many definitions of enumeration depending upon context. A general 
dictionary definition of enumerate, from which the word enumeration is derived, is 
“to mention separately or in order; name one by one; list” (William Collins and Sons 
Co. Ltd, 1987). Chi-Liang Ni also provides a general definition: “Enumeration is a 
process for enclosing, labelling and numbering individual entities for further linking 
or referring to the related entities in one-to-one, one-to-many, and many-to-many 
relationships” (Chi-Liang Ni, 1997). 

Each area of computing has its own slightly more refined definition for enumeration. 
When discussing USB devices, enumeration may be defined as “the mechanism by 
which a USB host determines the status, configuration, and capabilities of an 
inserted USB device” (Davis, 2013). Birkholz defines service enumeration as 
“identifying what is running on listening ports” and host enumeration as making an 
“accurate guess at OS and version” (Birkholz, 2002). Also, in terms of web application 
security, valid user identifiers which should be further investigated are enumerated 
(Stuttard & Pinto, 2008).  

Within computer security the process of enumeration is an information gathering 
technique that uses active connections to a system and directed queries to obtain 
information from previously identified services (Scambray & McClure, 2008).  

However, for the purposes of this project, ‘enumeration’ will be defined as: the act 
of gathering information from a system or service utilising active connections and 
queries. 

Enumeration is a key aspect of many computer security testing methodologies 
including the Open Source Security Testing Methodology Manual (OSSTMM) 
(ISECOM, 2010) and is described in much of the literature (McClure, et al., 2009; 
Scrambray & McClure, 2008; Stuttard & Pinto, 2008, O’Dea, 2003). By learning as 
much as possible about the services that have been exposed to the network a 
complete view of the environment is obtained, this allows services with 
vulnerabilities to be targeted (O'Dea, 2003). It allows auditors to retrieve the 
information they require without the need to interrupt the network administrators 
(Melber, 2011). (McClure , et al., 2009 ) (Sca mbray & McClure, 20 08) (Stuttard & Pi nto, 20 08) (O'Dea, 2 003 ) 

2.2 Services to Enumerate 

Information can be enumerated from practically every service that is in common use 
on an internal network. By querying information from open ports that have been 
discovered it is usually possible to retrieve information such as version information 
for the service and server and a list of valid usernames for services such as File 
Transfer Protocol (FTP), Simple Mail Transfer Protocol (SMTP), Trivial File Transfer 
Protocol (TFTP), Hypertext Transfer Protocol (HTTP) and finger (McClure, et al., 
2009). 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 10 
 

The Microsoft RPC Endpoint Mapper (MSRPC) service runs on TCP Port 135 allowing 
data exchange and invocation of functionality in different processes on the same 
computer, a computer on the local area network (LAN) or across the internet 
(Microsoft, 2003). It can yield information about the applications and services 
available on the target machine along with IP addresses for each interface (McClure, 
et al., 2009). This information can be used to identify services and identify hosts that 
are multihomed (i.e. have more than one network interface and therefore more than 
one IP address). 

The Windows Internet Name Service (WINS) provides a distributed database that 
maps NetBIOS names to IP addresses. WINS is required for versions of the Microsoft 
Windows operating system prior to Windows 2000 whereas later versions of 
Windows uses the Domain Name System (DNS). However WINS is enabled by default 
in all currently supported versions of Windows to accommodate legacy operating 
systems (Microsoft, 2012). The NetBIOS Name Service (NBNS) provides a means of 
resolving NetBIOS names to the mapped IP address in the WINS database. The 
NetBIOS Name Service (NBNS) runs on UDP port 137 and can be used to enumerate 
Windows workgroup domain and host names on the local network segment, or, if 
NBNS is routed over TCP/IP, the entire network (McClure, et al., 2009). 

Server Message Block (SMB) protocol runs on TCP port 139 (NetBIOS Sessions) and 
445 (SMB over raw TCP/IP), providing a means to share resources across a network. 
Once a session has been established it is possible to gather a wealth of information 
including network information, shares, users, groups, registry keys, and account 
policies (Scambray & McClure, 2008). Traditionally it has been possible to utilise 
‘null’ credentials, i.e. a blank username and password, to establish a session with a 
Windows host (Veerasamy, 2009), however since Windows Server 2008 the default 
configuration has either completely prevented a null session from being established 
or restricted the information that can be obtained. Nevertheless null sessions are 
still allowed on many networks due to legacy servers which require null sessions in 
order to connect to the domain controller, authenticate users and carry out other 
operations. Skoudis (2013) also demonstrates that any user credentials can be used 
in place of null credentials to establish a session and posits that it is common to gain 
standard user credentials toward the beginning of a security assessment and the 
SMB service should therefore not be overlooked. 

Allen, et al. (2006) describe Microsoft Active Directory (AD), it is built on top of 
Windows Server, enabling administrators to manage enterprise-wide information 
efficiently from a central repository. It contains information about users, groups, 
computers, printers, applications and services; and can limit access to this 
information. AD is reliant on the Domain Name System (DNS), unlike its predecessor, 
Windows NT, which was reliant on Windows Internet Naming Service (WINS). As DNS 
is an open standard it became ubiquitous across the internet, unlike WINS which is 
proprietary and was typically only used in Windows NT environments (Allen, et al., 
2006). This integration with DNS allows DNS queries to be used to gather a list of 
Domain Controllers and servers running specific services. 

 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 11 
 

2.3 Existing Tools 

A number of tools exist which can be used to enumerate information from one or 
more of these services given some prerequisite information. These operate entirely 
on the command line with a few notable exceptions. 

2.3.1 Microsoft RPC Endpoint Mapper (MSRPC) 

There are a number of tools that enumerate information from MSRPC the most 
common of which are outlined below. 

2.3.1.1 epdump 
Paul Leach of Microsoft released a simple Windows tool called epdump in 1997 to 
identify the IP address and port number that a service is listening on along with the 
named pipes and SPX bindings (Cooper, 1997). The advantages of this tool for 
enumeration are that the user only needs to specify a target to enumerate in order 
to retrieve the information. However it can only enumerate one host at a time, it 
does not provide any ‘help’ output to indicate the required command line 
arguments, and has not been revised since initial release. Another difficulty with this 
tool is that the output is difficult both for a person to read and for a program to 
parse as it is spread over multiple lines (see Figure 2.1).  

 

Figure 2.1: epdump output 

2.3.1.2 RPCDump.py 
RPCDump.py from CoreLabs is an open source Python script that lists services that 
are available. A benefit of using this tool over epdump is that it allows queries to be 
directed over ports and protocols such as 80/HTTP 445/SMB, 139/SMB, 135/TCP and 
135/UDP (McClure, et al., 2009). Other advantages include a slightly more legible 
output than the alternative (see Figure 2.2), authentication using either username 
and password or a password hash, and a command line help text. However like 
epdump it can only enumerate one host at a time, and the output, although 
readable is not parseable because it is spread over multiple lines. 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 12 
 

 

Figure 2.2: RPCDump.py output 

2.3.1.3 RPCDump.exe 
RPCDump.exe from the Microsoft Resource Kit can also be used to enumerate 
information from the MSRPC service, it too requires the user to specify the host to 
enumerate and lists the interfaces and services available in a similar fashion to 

epdump (Scambray & McClure, 2008). The advantages of this tool include a variable 
level of verbosity, command line help text, and enumeration over multiple protocols. 
The disadvantages are that the output is difficult to read and parse (see Figure 2.3), 
and this tool has not been developed for some time. 

 

Figure 2.3: rpcdump.exe output 

 

 

 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 13 
 

2.3.2 NetBIOS Name Service (NBNS) 

The following tools enumerate information from NBNS. 

2.3.2.1 net view & nltest 
The net view command is built into the Windows operating system and can be 
used to enumerate information workgroup domain and host names. Another utility 
from the Microsoft Resource Kit, nltest, can be used to identify a list of domain 
controllers for a specified domain name. (McClure, et al., 2009). These utilities have 
advantages which include a parseable and readable output, a command line help 
output, and continuing support from Microsoft. There is no significant disadvantage 
to these tools for this purpose. 

2.3.2.2 netviewx 
Lauristen (1999) released the closed source tool netviewx which is similar to net 

view but also allows identification of servers with specific services. The output of 
this tool is delimited by commas and new lines with the intention of making it easily 
parsable however it is not very readable (see Figure 2.4). 

 

Figure 2.4: netviewx output 

2.3.2.3 nbtstat 
Another tool built into the Windows operating system is nbtstat, this tool 
enumerates the system name, the domain name, any running services, media access 
control (MAC) address and any logged in users, of a system specified by either an IP 
address or a system name (McClure, et al., 2009). This tool has several 
disadvantages. The output uses a NetBIOS service code to identify each entity, for 
example <00> indicates the Workstation service computer name; this requires users 
of this tool to memorise these service codes before they can effectively use the 
output. It is also limited to enumerating information from one host at a time, and 
the output is not easily parseable (see Figure 2.5). The benefits of this tool include: 
continued support from Microsoft, readable output, and clear command line help 
output. 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 14 
 

 

Figure 2.5: nbtstat output 

2.3.2.4 nbtscan 
Some of the disadvantages of nbtstat have been addressed in a tool called 
nbtscan. This tool will perform the same enumeration as nbtstat but does so 
across an entire network range and translates the NetBIOS service codes in its 
output (Scambray & McClure, 2008) making it readable. This tool also has some 
disadvantages which include: the output is not parseable and the tool has not been 
worked on since 2008. 

 

Figure 2.6: nbtscan output 

2.3.3 Server Message Block (SMB) 

There are a number of tools for SMB enumeration, some of the most popular are 
outlined below. 

2.3.3.1 net view, nltest & req 
Once a session has been established the utilities built in to Windows can be used to 
gather even more information (Scambray & McClure, 2008). The net view utility 
on Windows can enumerate share names and comments on an individual, specified 
remote system. Nltest can enumerate the domains that a server trusts through a 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 15 
 

session. The reg utility can be used to enumerate registry keys on a remote host, 
although by default most of the registry is restricted to administrators, it is possible 
to retrieve the applications that start up with Windows. As previously stated, these 
tools have the advantage of continuing Microsoft support, readable/parseable 
output, and help output which specifies the arguments. The primary disadvantage of 
using these tools in this manner is that the user must handle creating and destroying 
sessions. 

2.3.3.2 Dumpsec 
Singleton (2008) describes Dumpsec as a utility that allows an IT auditor to access a 
Microsoft Server running Active Directory and print out users and access rights. The 
utility has a simple graphical interface (Berghel & Hoelzer, 2005) and can enumerate 
all basic account information including the username, whether the account is locked 
out or disabled, if a password is required, the account comment, account type and 
home directory (Melber, 2005). However Melber (2005) described this tool as falling 
short when it comes to enumerating the more advanced user account properties and 
will give false results for account properties that have changed technical 
functionality between Windows NT and Windows Active Directory. Melber also 
notes that “there is no tool that can decrypt the complex array of settings and 
possibilities that exist within a Remote Access Policy. This must be done manually” 
(Melber, 2005). Dumpsec can also be used from the command line using a large 
number of lengthy options and gather policies, user rights and services, but these 
items are restricted by default on Windows (Scambray & McClure, 2008). 

2.3.3.3 Enum 
Berghel & Hoelzer (2005) state that Enum is a freely available utility that establishes 
null sessions and enumerates shares across networks and also offers password and 
user name brute force capabilities. Scambray & McClure (2008) expound this 

description, indicating that Enum was the first tool to incorporate nearly every SMB 
enumeration feature in a single utility. The primary advantage of this tool over many 
of the alternatives is that it has the capability to enumerate a number of categories 
of information, it also handles authentication for the user (utilising null credentials 
by default) and outputs in a readable form. There are also disadvantages to this tool, 
it has not been developed in some time, and the output is not easily parseable (see 
Figure 2.7). 

 

Figure 2.7: enum output 

2.3.3.4 rpcclient 
The rpcclient from the Samba Suite is a Linux tool for executing client side 
MS-RPC functions, it was initially developed to test the MS-RPC functionality in 
Samba itself and has undergone several stages of development and stability (Samba 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 16 
 

Team, 2010). Skoudis (2013) provides a description of how rpcclient can be 
utilised to perform SMB enumeration using null or standard user credentials. Unlike 
other tools, rpcclient can run as an interactive program with usability benefits 
such as tab auto completion, but also offers the capability to run a single command. 
A plethora of commands to enumerate specific information are available and 
detailed within the command line help output. Another advantage of this tool is that 
it is relatively easy to parse and read the output (see Figure 2.8). However this tool 
was not specifically developed for enumeration so also offers functions to alter 
information, and does not provide a means to automate gathering a variety of 
categories of information. 

 

Figure 2.8: rpcclient output 

2.3.3.5 Enum4Linux 
Enum4linux is a Linux tool written in Perl that clones the functionality of enum 
using tools from the Samba suite including rpcclient (McClure, et al., 2009). One 
advantage of this tool is that it provides options for conducting all simple 
enumeration (user list, share list, group and member list, rid cycling, operating 
system information, and NetBIOS Name lookup). However it requires the user to 
specify the host from which it enumerates information. 

2.3.3.6 NetE 
NetE is another tool that is capable of retrieving a large amount of information 
using the Windows Net* API functions, the latest version was released by ‘Sir Dystic’ 
in the year 2000. Unlike most other tools it offers a command line option to perform 
all enumeration however it is limited to a single host specified by the user (Scambray 
& McClure, 2008). Another key disadvantage of this tool is that it has not been 
updated in many years and does not run on modern versions of Windows without 
altering the source code and recompiling. 

2.3.3.7 NBTEnum 
Another ‘all-in-one’ enumeration tool that also has password brute force capabilities 
and utilises NetBIOS sessions is NBTEnum. Among the advantages of this tool are an 
extensive yet easy to read HTML output and an option to allow all basic enumeration 
to be conducted autonomously when provided with a target and credentials. One 
drawback of this tool is that it has not been updated since 2006 and the product’s 
homepage no longer exists implying that the tool will not be updated in the future. It 
also requires the user to specify either a single host or a file containing a list of hosts. 

 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 17 
 

2.3.3.8 user2sid & sid2user 
The security identifier (SID) is a variable length numeric value issued to an NT Family 
system at installation. The SID can be discovered from a username using a tool called 
user2sid and be used to discover a username using sid2user (McClure, et al., 
2009). These tools are simple and have only one function, however they can be used 
in a loop to discover all users on a target system. The disadvantages of these tools 
include that they have not been developed since 1998 and while the output is easily 
readable it is not easily parsed.  

2.3.3.9 NSlookup 
One cross platform tool that is can be used for enumeration of information from the 
DNS service is NSlookup. This program comes with many TCP/IP software 
packages; it can be used to examine entries in the DNS database that pertain to a 

particular host or domain (Kessler & Shepard, 1997). NSlookup can be used to 
execute a zone transfer, which retrieves all the records from a DNS server (Scambray 
& McClure, 2008). Individual lookups for any kind of DNS record can also be 
performed. For example ‘A’ records for a given domain name can be queried to 
identify domain controllers (Allen, et al., 2006). A shortcoming of this tool is that it 
the output is not parseable (see Figure 2.9). However the output is readable and the 
tool can be run either interactively or as a command line utility. 

 

Figure 2.9: nslookup output 

2.3.4 Summary 

Table 1 below summarises the information that each of the existing tools can 
enumerate. 

 

e
p
d
u
m
p
 

r
p
c
d
u
m
p
.
p
y
 

n
e
t
 
v
i
e
w
 

n
e
t
v
i
e
w
x
 

n
b
t
s
t
a
t
 

n
b
t
s
c
a
n
 

n
l
t
e
s
t
 

r
e
g
 

d
u
m
p
s
e
c
 

e
n
u
m
 

r
p
c
c
l
i
e
n
t
 

e
n
u
m
4
l
i
n
u
x
 

N
B
T
E
n
u
m
 

u
s
e
r
2
s
i
d
 

s
i
d
2
u
s
e
r
 

n
s
l
o
o
k
u
p
 

Domain 
Name 

                

Domain 
Controller 

                

Windows 
Hosts 

                



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 18 
 

 

e
p
d
u
m
p
 

r
p
c
d
u
m
p
.
p
y
 

n
e
t
 
v
i
e
w
 

n
e
t
v
i
e
w
x
 

n
b
t
s
t
a
t
 

n
b
t
s
c
a
n
 

n
l
t
e
s
t
 

r
e
g
 

d
u
m
p
s
e
c
 

e
n
u
m
 

r
p
c
c
l
i
e
n
t
 

e
n
u
m
4
l
i
n
u
x
 

N
B
T
E
n
u
m
 

u
s
e
r
2
s
i
d
 

s
i
d
2
u
s
e
r
 

n
s
l
o
o
k
u
p
 

Services on 
Host 

                

Hosts 
running 
Service 

                

Usernames                 

Groups and 
Membershi
p 

                

User 
Account 
Information 

                

Account 
locked out 

                

Account 
Disabled 

                

Password 
Policy 

                

Account 
Policy 

                

Registry 
keys 

                

Share 
Information 

                

Platform 
[Windows, 
Linux, 
Multiple] 

W M W W W W W W W W L L W W W M 

Domain 
Trusts 

                

MAC 
Address 

                

Latest 
Release 
Date 

                

Requires 
Authenticat
ion 

                

Handles 
Authenticat
ion 

                



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 19 
 

 

e
p
d
u
m
p
 

r
p
c
d
u
m
p
.
p
y
 

n
e
t
 
v
i
e
w
 

n
e
t
v
i
e
w
x
 

n
b
t
s
t
a
t
 

n
b
t
s
c
a
n
 

n
l
t
e
s
t
 

r
e
g
 

d
u
m
p
s
e
c
 

e
n
u
m
 

r
p
c
c
l
i
e
n
t
 

e
n
u
m
4
l
i
n
u
x
 

N
B
T
E
n
u
m
 

u
s
e
r
2
s
i
d
 

s
i
d
2
u
s
e
r
 

n
s
l
o
o
k
u
p
 

Automated                 

GUI                 
Table 1 Existing Tools 

Many of the existing tools require the user to deal with authentication; do not 
provide an automated means of enumeration and require user input to obtain a 
large amount of information. Most commonly the user must specify a host IP 
address and domain name from which information will be enumerated. In the 
author’s experience this is usually accomplished by running several tools in 
succession to gather the required information for enumeration from the Windows 
domain controller. 

The majority of the existing tools were also developed some time ago and have not 
been updated since despite some significant changes to the Windows domain 
environment. 

A common drawback of the existing tools is the unparseable output. This requires 
the user to read through and extract the required information piece by piece. 

Very few of these tools offer an automated option to gather all the information, 
instead requiring the user to explicitly state what information should be returned. 

These disadvantages will be addressed in this project by creating a new tool for 
Windows domain enumeration which does not suffer from these flaws. 

The primary benefit of the new tool is that it requires very little input from the user 
to gather a large amount of information and can therefore be left to run unattended. 
This is in contrast to other tools which require direction from the user and often for 
several tools to be run consecutively to produce the same information. 

The new tool will also be designed for and tested on the latest versions of the 
Windows Domain ensuring that the tool runs correctly against these platforms. This 
gives it an advantage over existing tools which have not been developed since the 
latest platforms have been released. 

Another significant advantage of this tool will be the output format. Unlike many 
existing tools, the output will be in a form that is readable by a person but also 
parseable by a machine. This greatly increases the usability of the output because it 
can be interpreted by other programs and scripts which perform further automated 
tasks, while still allowing the user to manually interpret the information with ease. 

By using official Windows API this tool will also have the benefit of running 
successfully on all versions of Windows and greater stability because the API 
functions abstract messages and commands which may change at any time within 
the operating system.  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 20 
 

3 Commentary on Requirements Specification 

3.1 Requirements 

Multiple requirements have been specified for this project and are explained in 
detail in Appendix B which follows the IEEE Guidelines for a Software Requirements 
Specification. 

The key requirements are included below. 

3.1.1 Essential 

The following requirements must be met by the product. 

1) Run on a machine that is not a member of a domain 
2) Run on a Microsoft Windows machine 
3) Identify domain names on a local area network 
4) Identify domain controllers 
5) Retrieve a list of users from the active directory 
6) Retrieve a list of groups from the active directory 
7) Retrieve a list of group members from the active directory 
8) Retrieve user account information from the active directory 
9) Retrieve the domain accounts policy (Lockout: duration, threshold, 

observation window. Password: length, character set) 
10) Perform automated enumeration 
11) Output in a parseable and human readable format 
12) Provide a help / usage guide 

3.1.2 Desirable 

The following requirements maybe met by the product. 

1) Perform directed enumeration 
2) Identify services running on hosts 
3) Identify domain trusts 
4) Retrieve a list of users from a local host 
5) Retrieve a list of groups from a local host 
6) Retrieve a list of group members a local host  
7) Retrieve information user account information from a local host 
8) Retrieve the local accounts policy (Lockout: duration, threshold, observation 

window. Password: length, character set) 
9) Retrieve a list of shares from a local host 

3.1.3 Excluded 

The product will not have the following requirements. 

1) Conduct password guessing / brute force attacks 
2) Include an interactive prompt 
3) Include a graphical user interface (GUI) 
4) Run on a linux based platform 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 21 
 

3.2 Design Methodology 

There are several different design methodologies which could be suitable for this 
project. This section will outline these methodologies and justify the selection. 

3.2.1 Methodologies 

3.2.1.1 Functional Decomposition 
Functional decomposition is “the divide-and-conquer technique applied to 
programming” (Bergland, 1981), essentially the problem is broken down into its 
constituent functions. The design process can be expressed as the following steps: 

1. Clearly state the intended function. 
2. Divide, connect, and check the intended function by re-expressing it as an 

equivalent structure of properly connected sub functions each solving part of 
the problem. 

3. Divide, connect and check each sub function far enough to feel comfortable. 

Bergland (1981) states there are several problems involved in applying this 
technique. One of these problems is unpredictability and variability because 
although decomposition must be performed it is not specified what it should be 
performed with respect to, i.e. time order, data flow, logical groupings, etc., and 
therefore each programmer is likely to take a different approach to solving the same 
problem. “The choice of ‘what to decompose with respect to’ has a major effect on 
the ‘goodness’ of the resulting program and is therefore the subject of much 
controversy” (Bergland, 1981).  

However the major advantage of this methodology is its general applicability i.e. it is 
a suitable methodology for a wide variety of projects.  

3.2.1.2 Data Flow Design 
In its simplest form, data flow design is functional decomposition with respect to 
data flow, each block of the application has an input stream and an output stream 
which can be linked together to form the computational process (Bergland, 1981). It 
models the flow of data through a system and at the design level specifies the 
system structure in terms of the calling relationship among modules (Kitchenham & 
Carn, 1990). 

However this decomposition tends to lead to a network of programs each of which 
process the data, instead of a hierarchy of programs. 

The four basic steps of data flow design are: 

1. Model the program as a data flow graph. 
2. Identify afferent (input), efferent (output), and central transform elements. 
3. Factor the afferent, efferent, and central transform branches to form a 

hierarchical program structure. 
4. Refine and optimise. 

 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 22 
 

3.2.1.3 Data Structure Design 
Data structure design methods are based on analysing the structure of input and 
output data (Kitchenham & Carn, 1990). As the program structure is derived from 
the data structure, the different levels of the hierarchy tend to be a ‘is composed of’ 
relationship (Bergland, 1981). This relationship forms a firm base for modelling the 
problem because it does not change during the execution of the program. This 
design methodology results in consistency because two different programmers 
should also create program structures that are essentially identical since it is based 
on the structure of the data (Bergland, 1981). 

The design strategy for this methodology is outlined as: 

1. Form a system network diagram that models the problem environment. 
2. Define and verify the data-stream structures. 
3. Derive and verify the program structures 
4. Derive and allocate the elementary operations 
5. Write the structure text and program text. 

The major problem with this methodology is that although it is clear how to apply it 
to small problems, the ‘correct’ method for extending it to large system problems is 
less clear (Bergland, 1981). 

3.2.1.4 Object Orientated Design 
Object orientated design is based on identifying the objects of interest in a system 
and treating them as abstract data types which have associated operations that 
interrogate and alter their state (Kitchenham & Carn, 1990). 

Object orientation allows for polymorphism, this means that a many different 
behaviours could result from the same call depending upon the object (Shalloway & 
Trott, 2004). For example, consider two classes of ‘shape’, ‘square’ and ‘triangle’. 
They both require a ‘draw’ method, but how they are implemented may be very 
different. However the calling program does not need to know the implementation 
details or even that there are different types of shape, it simply needs to have a 
method to instruct all the shapes to draw themselves. Therefore an abstracted class 
‘shape’ from which ‘square’ and ‘triangle’ are derived, is used which defines a public 
method ‘draw’. 

By encapsulating functionality in an object and presenting a public interface to this 
functionality, changes to the implementation for a specific object do not impact the 
caller. This reduces bugs in the program, makes an objects internal behaviour 
transparent to other objects and prevents bugs resulting from changes to functions 
therefore increasing the ease with the code can be maintained. 

3.2.1.5 Selection 
Object orientated design has been selected for this project because the number and 
varied nature of the information to enumerate and the methods of enumeration 
lends itself to an object orientated approach. Each method of enumeration can be 
modelled as an object that inherits from a parent enumeration class. Polymorphism 
is also useful in this case as each enumeration object should have an ‘enumerate’ 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 23 
 

method which performs differently for each object in order to obtain the required 
information. 

Additionally the reduced number of bugs and greater ease of code maintainability 
that come with an object orientated approach due to encapsulation are assets to this 
project. 

Although this project could be completed using any of the alternative design 
methodologies discussed above the disadvantages are more significant than those of 
object orientation. 

The unpredictability of functional decomposition and data flow methodologies make 
them unsuitable for this project as it is intended for open source public release. This 
means that a large number of contributors may be involved at a later date so the 
application design should be apparent without direct communication between 
contributors. 

While the data structure design method makes the application design apparent, it is 
reported to not scale well. This would be a handicap for this application as it may 
grow as requirements are added for additional information to be enumerated.  

3.2.2 Unified Modelling Language 

The industry standard Unified Modelling Language (UML) is a design methodology 
that can be used for object orientated programs, providing tools for design and 
implementation of software based systems as well as modelling of business and 
similar processes (Object Managment Group, 2012). UML has the potential to aid 
affective communication of a complex design in a simplified form, helping to ensure 
that everyone has the same understanding of the system (Shalloway & Trott, 2004). 
Using this specification it is possible to model the application in a form that can 
easily be used to create a high level testing strategy (Samuel & Mall, 2009). 

There are several diagrams that are defined in UML which are used in the different 
phases of the project. 

Use cases are textual descriptions of success and failure scenarios of an actor using a 
system to meet a goal; created during the analysis phase of the project (Larman, 
2004). In this context an actor is something with behaviour, for example a person, 
organisation or another computer system. And a scenario (also known as use case 
instance) is a specific sequence of actions and interactions between actors and the 
system. A simple UML “use case diagram provides a succinct visual context diagram 
for the system, illustrating the external actors and how they use the system” 
(Larman, 2004). 

When considering object interactions sequence diagrams are created to illustrate 
input and output events from external actors to a system. Each sequence diagram 
shows the set of events within a use case, external actors, the system, and the 
system events that are generated (Larman, 2004). Systems are represented as a 
black box in sequence diagrams so that the emphasis is on the “events that cross the 
system boundary from actors to systems” (Larman, 2004). 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 24 
 

During the design phase class diagrams are created to visualise classes, interfaces 
and their associations (Larman, 2004). Class diagrams are usually derived from the 
sequence diagram. 

A UML state machine diagram illustrates the interesting events, states and 
transitions of an object along with the object’s behaviour in reaction to an event 
(Larman, 2004). These diagrams can be arbitrarily simple or complex levels of detail 
depending on the author’s needs. In this setting an event is defined as a significant 
or noteworthy occurrence, a state is the condition of an object between events, and 
a transition is a relationship between two states that indicates the object moves 
from one to the other when an event occurs. 

In the deployment phase, deployment diagrams are used to show the assignment of 
software artefacts, such as executable files, to computational nodes (something 
processing services) (Larman, 2004). This includes the deployment of software on 
the physical architecture and the communication between physical elements. 

3.2.3 Design Patterns 

UML design patterns are reusable constructs for software development; they 
describe a general solution to a problem that is common in many projects (Dong & 
Yang, 2003). There are three key reasons to use patterns (Shalloway & Trott, 2004). 
Patterns allow reuse of solutions, this reduces duplication of work and helps to avoid 
common pitfalls because it has the benefit of learning from the experience of others. 
They provide a common point of reference during the analysis and design of a 
project, establishing terminology and a common viewpoint of the problem. Patterns 
also give a higher level perspective on the problem, design and object orientation, 
allowing details to be ignored in the early phases. 

For example the iterator pattern (Gamma, et al., 2012) provides a standard interface 
for traversing a collection of items. This may be used in ‘reporter’ section of the 
product to traverse through the information that has been enumerated so that it can 
be reported to the user. The command pattern (Gamma, et al., 2012) expresses a 
request, including the call and all required parameters of a command object, which 
may be executed immediately or held for later use. This pattern may therefore be 
used in the ‘enumerator’ functions which must make use of Windows API calls.  

3.3 Security Development Lifecycle 

The Microsoft Security Development Lifecycle (SDL) “is a set of processes and tools 
designed to reduce the number and severity of vulnerabilities in software products” 
(Lipner, 2010). Creating a product that is free from serious security flaws is a goal 
which all developers should strive to achieve and should be considered by potential 
users of the application. 

The SDL consists of seven phases and 17 practices which span the lifetime of the 
project. However not all of these are relevant to an individual project so will not be 
covered. 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 25 
 

Establishing Security and Privacy Requirements. Defining and integrating these 
requirements early minimises disruption and makes it easier to identify key 
milestones and deliverables. This involves defining minimum security and privacy 
criteria for the application and deploying a security vulnerability/work item tracking 
system (Microsoft, 2013). 

In this project, this practice will be followed by establishing security requirements by 
considering potential attackers of the system and their intents and creating 
requirements that will prevent the attacker exploiting the system. Privacy 
requirements are not applicable to this project as it is a single user system that is 
designed to make available as much information as possible from the Windows 
Active Directory. A vulnerability/work item tracking system will be implemented by 
creating a private project on bitbucket.org with issue tracking. Using bitbucket.org 
has the added advantage of backing up the project source code off site. 

Perform Security and Privacy Risk Assessments. Portions of a project that require 
threat modelling and security design review before release are identified by 
examining software based on costs (e.g. monetary, reputation, time) and regulatory 
requirements. 

The security and privacy considered in this project is that of the single user and their 
system that runs the application, rather than the user’s that the application retrieves 
information about because this application is intended to be used during a security 
assessment of a Windows domain and therefore must not limit the information 
retrieved. The primary focus of the risk assessments will be to determine the level of 
risk associated with interacting with external systems such as DNS and the Windows 
domain. 

Practice 5: Establish Design Requirements. Validating all design specifications 
against a functional specification involves accurate and complete design 
specifications, including minimal cryptographic design requirements and a 
specification review. 

In this project these design requirements will primarily pertain to how input into the 
system by the user and external systems is handled to prevent security and privacy 
issues.  

Practice 6: Perform Attack Surface Analysis/Reduction. “A system’s attack surface is 
the subset of the system’s resources that an attacker can use to attack the system” 
(Manadhata & Wing, 2011). Limiting the opportunities for attackers to exploit 
potential weaknesses in the application requires an analysis of the attack surface and 
applying the principle of least privilege and layered defences. The principle of least 
privilege is that every user and program of a system should only have the minimum 
amount of permissions required to complete their task, the military security rule of 
‘need-to-know’ is an example of this principle (Saltzer & Schroeder, 1975). 

In this project the avenues of attack, such as file and network input/output, will be 
identified and reduced to the minimum required for the application to operate. 
Every feature will act under the principle of least privilege so that any flaw in the 
feature does not result in complete compromise of the system’s security. Layered 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 26 
 

defences will be utilised, such as: validating and sanitising input and following coding 
standards to increase ease of bug detection. 

Practice 7: Use Threat Modelling. Applying a structured approach to threat 
scenarios enables vulnerabilities to be identified, risks associated with those threats 
to be determined and appropriate mitigations established.  

The threats to the system, i.e. an attacker’s potential goals, will be identified by 
analysing the program’s use cases against the STRIDE threat types (Torr, 2005): 

 Spoofing – Impersonating something or someone else when a 
communication passes over a trust boundary. 

 Tampering – Modifying data in transit or while it resides on a machine. 

 Repudiation – performing an action that cannot be traced back to them 

 Information Disclosure – information exposed to unauthorised parties. 

 Denial of Service – Preventing the system’s legitimate operation 

 Elevation of Privilege – performing actions without proper authorisation. 

3.4 Language Choice 

Several factors must be considered when choosing one of the many available 
programming languages for this project. These factors include programmer 
productivity, maintainability, efficiency, portability, tool support, and software and 
hardware interfaces (Spinellis, 2006). 

The languages listed below will be compared using the factors outlined above in 
order to identify an appropriate development language for this project. These are 
not the only languages that could be used to create a product that meets the needs 
of this project, however these are the three that the author has most experience 
with and time constraints preclude the use of a language that must first be learned 
from by the author. 

 C 

 C++ 

 Python 

Programming languages can be split into two broad categories: compiled languages 
(such as C and C++) and scripting languages (such as Python).  

The C programming by Kernighan and Ritchie (1988) is a general purpose procedural 
programming language, by design it has the greatest degree of independence 
possible from specific hardware platforms. It is a low level language i.e. dealing with 
the same sort of objects as computers do: character, numbers and addresses. It does 
not have operations to manipulate composite objects such as strings, does not have 
any built in heap or garbage collection, or support multiprogramming or parallel 
operations. As C is independent of machine architecture, it is relatively easy to write 
portable programs, programs that can be run on a variety of hardware without 
change. C is a small language that does not have any high-level mechanisms, such as 
input and output, built in; instead these mechanisms must be explicitly called from 
the extensive standard library.  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 27 
 

C++ created by Stroustrup (1997) is based on C so retains many of its predecessor’s 
positive aspects including speed and platform independence. However C++ 
implements additional features that improves on the C programming language 
including object orientation (OO) through the ‘class’ type. C++ is in widespread use in 
part because it allows fast reliable code to be written in areas where requirements 
change significantly over time, proving itself to be maintainable and providing ease 
of extension and testing. 

The core Python language and libraries are platform neutral, allowing programs to 
be run on any of the major platforms Lutz (2006). Scripting languages are also orders 
of magnitude easier and quicker to use than their compiled counterparts, the 
resulting systems are easier to change and reuse over time, and tasks such as 
network scripting and multitasking are a lot less cumbersome. Python is a modular, 
object orientated language which allows code reuse. Its clearly readable syntax and 
coherent design leads to readable code which can be more easily maintained. The 
speed of development is also increased as interpreter handles details that must be 
explicitly dealt with in lower level languages such as C and C++. 

The Python programming language is object orientated (Lutz, 2013), supporting 
advanced notions like polymorphism, operator overloading and multiple inheritance. 
However it is remarkably easy to apply object orientated programming in Python 
due to its simple syntax and dynamic typing.  

Each of these languages can utilise the Windows API, however the level of 
documentation for each language is vastly different. C++ is well supported by 
Microsoft as each API function is documented with a C++ syntax snippet. C is stated 
as supported by Microsoft, however there is no C code available in the 
documentation. Python on the other hand accesses the Windows API using the 

pywin32 library, documentation for this library is available and references the 
Microsoft documentation where appropriate. 

Prechelt (2000) conducted an empirical comparison of multiple programming 
languages including C, C++ and Python in which each language was used to 
implement the same functionality by several programmers. It was found that the 
development time (i.e. the time it takes to create a working product) for a Python 
program was half or less than that of C and C++, and the resulting code base (i.e. 
number of lines of code), was also half the size. C and C++ were revealed to have a 
significant advantage at run time, during initialisation of the program they were five 
to 10 times faster than other languages and during the main phase they were twice 
as fast. The memory consumption for the program in C and C++ was also determined 
to be half that of the alternatives. 

After considering each of the prospective languages Python was selected for this 
project for the following key reasons: 

 The lower development time (i.e. the time it takes to create a working 
product) will allow the project to be completed by the deadline. 

 The smaller code base (i.e. number of lines of code) and readable syntax 
increases ease of maintainability. 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 28 
 

 The proposed application is not expected to be time critical, so the 
performance benefits of C and C++ do not outweigh the increased 
development time. 

 Python has the capability to integrate with C compatible languages. 
Therefore if an area of the application is found to require the efficiency that C 
provides, this section can be written in C and integrated into the larger 
Python application. 

 Out of the three, Python is the language that the author is most fluent in. 
 
  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 29 
 

4 Analysis Models and Design Specifications 

4.1 Use Cases 

The requirements dictate being able to perform manual and automated assessment 
of the domain and hosts. To fulfil these requirements use cases were produced 
which segregated these tasks. Architecturally, the highest level of the application 
handles user input and selects the appropriate middle level use cases based on the 
user’s input. The middle level use cases designated as ‘Automated Domain 
Enumeration’, ‘Automated Host Enumeration’, and ‘Manual Enumeration’, each of 
which uses lower level use cases. The low level use cases carry out specific actions, 
for example the ‘Enumerate Domain Groups’ will enumerate a list of groups that 
exist in the domain. 

There were several ways in which the desired functionality could have been split into 
hierarchal use cases. One alternative was to bundle all automated use cases together 
and all manual use cases together, however the significant differences between 
domain and host data was predicted to be unwieldy during implementation. 
Likewise bundling manual and automated domain use cases and manual and 
automated local use cases was considered to be unnecessarily difficult to implement 
due to the differences between automated and manual enumeration methods. 

For each specific requirement use cases were created to describe their behaviour in 
detail. For example ‘UC3’ (see Appendix C) was produced from essential requirement 
6) which dictates the retrieval of a list of groups from the active directory. It 
thoroughly documents the intended feature including conditions that must exist for 
the use case to run, the possible conditions after the use case has run, the normal 
flow of the use case along with any exceptions that may occur and how they should 
be handled, and any assumptions that the use case makes. 

4.2 Sequence Diagrams 

The content of each use case was used to create sequence diagrams which show the 
sequence of messages that are exchanged between elements of the application. For 
example the GetDomainGroups sequence diagram (see Figure 4.1) shows how 
the Actor sends the message get_domain_groups() to the Enumerate 

Domain Groups element which sends the message 
win32net.NetGroupEnum() to the pywin32 element during normal 
operation. 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 30 
 

 

4.3 Class Diagrams 

The sequence diagrams and use cases were then used to derive the class diagram. 
The class diagram catalogues an object’s inheritance, attributes and methods and 
indicates its relationship to other objects. For example the class diagram in Figure 

4.2 shows that the GroupEnumerator class inherits the BaseEnumerator class 
and is inherited by the NetGroupEnum class. Grouping similar objects together and 
extracting their common properties into an abstracted parent class, which can be 
inherited, reduces code duplication and increases maintainability as each feature is 
only implemented once in the parent class and then inherited instead of being 
implemented separately in every child class. 

The class diagrams also clearly indicate the levels at which attributes and methods 
are defined as well as where methods are overridden. For example the 
GroupEnumerator class defines the self._host attribute and methods to 

access it, its child, NetGroupEnumerator, inherits these and defines an 
enumerate method which overrides the enumerate method that it inherited 
from BaseEnumerator (via GroupEnumerator). Overriding methods 

implements polymorphism; each object implements the enumerate method in its 
own specific way but presents a common interface to the rest of the application, 
therefore a function can call the enumerate method on several different objects in 
the same way, but the actions that each object takes is different. Polymorphism 
makes it simple for a controller class to call all objects that do a specific type of 
enumeration, because it need only iterate through a list of the objects and call the 
enumerate method of each. 

 
Figure 4.1: GetDomainGroups Sequence Diagram 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 31 
 

 

4.4 Output Format 

The requirement specification specifies that the program should output in a 
parseable but readable form. There were several options available including creating 
a textual format that could be parsed by code developed specifically for it. However 
this was not considered to be the best available option as it would essentially require 
the development of a new standard specifically for this product which is obviously 
wasted effort when well known standards already exist to fill this need. 

There are two widely used textual data formats that are human and machine 
readable and therefore suitable for this project: Extensible Markup Language (XML) 
and YAML Ain’t Markup Language (YAML). XML is a markup language, meaning that 
it contains instructions for the software displaying the text but these are not 
displayed to the end user. It focuses on documents, but can be used to represent 
arbitrary data structures and can be transformed using Extensible Stylesheet 
Transformations (XSLT) to present the data in formats that are even easier for the 
user to read, for example as a web page using Extensible HyperText Markup 
Language (XHTML). 

On the other hand YAML is a data serialisation language that was designed to map to 
common data types increasing the ease with which data can be ported between 
programming languages. It also uses the minimum amount of structural characters 
to display the information making it more readable for the user. 

Consideration was also given to the libraries required to utilise these formats. The 
standard Python library contains several modules for XML, however YAML requires 
an additional module to be installed and configured.  

 

Figure 4.2: GroupEnumerator Class Diagram 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 32 
 

XML was selected as the most appropriate output format for this project, the 
primary reason being that it is a document markup language and the intended use in 
this application is to create a report document. The advantage of having standard 
library modules to manipulate this format was also cause to choose Python as it 
reduces the deployment requirements for the application. Finally the ease with 
which XML can be transformed into a web page contributed to the selection because 
although XML and YAML are both readable by a human in their raw form they still 
require the user to be familiar with the format, whereas a web page can be used to 
display the data in a way that is immediately understandable. 

The XML style sheet can either be a separate file or embedded within the XML file. 
While embedding the style sheet has the advantage of creating a single portable 
output file it increases the size of the file significantly which could become an issue if 
a large number of output files are saved. Referencing an external style sheet also has 
the advantage of being easily replaceable if the user wishes to modify how the data 
is displayed. Therefore the decision was taken to use an external style sheet that will 
be distributed with the project. 

4.5 Structure of Data 

Within the application data is stored in several different structures dependent upon 
the information that needs to be stored and the level within the program. The two 
highest level structures are Domain and Host, which reflect the level of 
information enumerated, either domain or local. These structures are designed as 
objects to encompass the entirety of the information that could be enumerated in a 
manner that is conceptually similar to how the information is stored within the 
Windows Active Directory and Security Account Manager (SAM). 

The attributes of the top level structures store the enumerated information as an 
appropriate data type, with methods to get and set the value. This abstraction allows 
the internal format to be altered without affecting the rest of the application. The 
type of the attribute is dictated by the relationship between the information and the 
top level structure, for example there are one or more domain controllers per 
domain therefore the self._domain_controllers attribute is a list which can 
store multiple other objects, but there is only one domain name per domain so the 
self._domain_name attribute is a string. 

Within each of these attributes the data type selected is dependent on the 
information it stores, for example self.domain_controllers list is populated 
with dictionaries because a single domain controller can be known by three distinct 
names (ip address, fully qualified domain name, and NetBIOS name). The policies 
attribute self._policies is also a dictionary because although there are several 
policies per domain, each has a discrete name and value and logically they should be 
grouped together as they work together to influence the security posture of the 
domain. 

The attributes discussed so far are relatively simple and therefore the built in types 
of the Python language have been sufficient to handle them. However two of the 
categories of information (groups and users) are more complex and call for a 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 33 
 

correspondingly more intricate structure to store them. The information for each 

group is stored in its own instance of a Group object, the name and comment for 
the group are stored as string attributes, and the members of the group are stored in 
a list attribute as strings. Similarly a user’s account information is stored in an 
instance of a User object with the majority of attributes as strings, but the 
self._groups attribute is a list of strings. Both of these objects implement 
methods to interact with the data, primarily adding to it or retrieving it all. 

Wherever viable Python’s built in types have been used because these are more 
efficient than types a developer can implement. It is technically possible to 
implement the entire data structure using built in types, nominally by nesting several 
dictionaries; however this would quickly become difficult to manage and would not 
allow methods to be implemented to validate data before it is assigned or abstract 
the internals of the data structure from the rest of the application. 

The lower levels of the application do not deal with this high level structure at all, 
instead the information they require to perform their action is passed to them as 
arguments and they return the information in as a built in type. This simplifies the 
lower level objects as they do not need to be able to handle the complex data 
structure. 

The higher levels of the application access the data structure using the appropriate 
methods to provide prerequisite information to the lower level objects and populate 
it with the information that is returned. 

4.6 Authentication Design 

The authentication design required careful consideration in order to fit sensibly into 
the object orientated design because, following the object orientated approach, 
each object must be able to perform all actions necessary to accomplish its 
objective. 

Practically every enumeration object requires authentication to perform its task 
successfully, a simplistic solution would be for each enumeration object to create an 
instance of an authentication object and call its authenticate and 
deauthenticate methods as appropriate for its needs. This would function 
correctly and be suitable if there was only one enumeration object per type of 
authentication (for example SMB), however this application has multiple 
enumeration objects which use the same type of authentication so the simplistic 
solution described above would result in a large number of sessions being created 
and destroyed which is not very efficient. 

A better solution requires authentication to be handled at a level above the 
enumeration objects so that a session can be created before the objects require it, 
and destroyed once all have finished with it.  

Several objects are involved in the authentication process, the lowest of these are 
the authenticator objects that implement that authentication and deauthentication 
as dictated by the type of authentication. For example the object 
SMBAuthenticator has the methods authenticate and deauthenticate 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 34 
 

which can be called to authenticate to a specified host using a given set of 
credentials or deauthenticate respectively (see Figure 4.3). 

 

The AuthenticationController defines a create_sessions method, as 
the name suggests this method creates sessions using the specified details by 
invoking the authenticate method of the lower level authenticator objects (see 
Figure 4.4). It also defines an authenticate method which checks if a session has 

Top Package::User SMBAuthenticator pywin32

authenticate(auth_type)

{OR}

_set_allow_deauth(False)

NetUseAdd()

{OR}

False

True

deauthenticate()

_already_authenticated(type)

_get_allow_deauth()

{OR}

NetUseDel()

 

Figure 4.3: SMBAuthenticator Sequence Diagram 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 35 
 

been successfully established, and a deauthenticate method which does 
nothing. 

 

The higher level objects, such as DomainAutomation, instantiate the 

AuthenticationController object and call the create_sessions 
method to establish the sessions, then pass this instance to the lower level 
enumeration objects. Each of the low level enumeration objects calls the 
authenticate method of the instance, if True is returned the object performs 
its enumeration and then calls the deauthenticate method. When all of the 

AuthenticationController Authenticator

Top Package::Actor

create_sessions()

authenticate(type)

True

{OR}

authenticated.append()

False

authenticate()

{OR}

True

False

destroy_sessions()

deauthenticate()

deauthenticate()

 

Figure 4.4: AuthenticationController Sequence Diagram 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 36 
 

lower level enumeration objects have completed the higher level object will call the 

destroy_sessions method of the AuthenticationController to 
terminate the sessions. 

Since the authenticate method of the AuthenticationController only 

checks if a session is already established, and the deauthenticate method does 
nothing, these methods have no real effect on the authentication with the remote 
system and merely serve the logic of the lower level enumeration objects. In this 
usage the low level enumeration object’s invocation of the deauthenticate 
method could be removed with no impact on the operation of the application. 

However it is also possible to pass the lower level enumeration object an instance of 
a lower level authenticator, in which case the invocation of the authenticate 
and deauthenticate methods would establish and terminate the session with 
the remote host. This use of abstraction between the authentication and 
enumeration objects increases their flexibility, potentially allowing them to be 
reused in other applications without any change to the underlying code. 

4.7 Design Patterns 

The mediator design pattern defines an object that encapsulates how a set of 
objects interact (Agerbo & Cornils, 1998). This pattern promotes loose coupling 
between objects by preventing them from referring to each other explicitly. 

Within this application this design pattern has been applied in automated use cases. 
For example the DomainAutomation object acts as the ‘Mediator’ for the 
enumeration objects ‘Colleagues’, because the majority of the ‘Colleagues’ require 
information from the others in order to carry out their task but require this 
information from the ‘Mediator’ rather than each other.  

This reduces the dependency that each object has on each other leading to more 
maintainable code because all interactions are carried out via the ‘Mediator’ so any 
change to any one ‘Colleague’ will only affect one interaction between ‘Colleague’ 
and ‘Mediator’ rather than many interactions that would otherwise exist between 
‘Colleagues’. 

The template method design pattern dictates that step by step algorithms are 
provided where each step can invoke an abstract method of a subclass or a base 
method (Wirfs-Brock & Johnson, 1990). Therefore the specific behaviour of an 
algorithm is provided by the subclass. 

This design pattern is utilised within the reporter objects of the application. The 

BaseXMLReporter object defines the template method generate which 
invokes the abstract method _to_rough_xml. The to_rough_xml method is 
that of the child’s class (i.e. DomainXMLReporter or LocalXMLReporter) and 
specifies how the XML to be generated.   



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 37 
 

5 Product Code 

5.1 Standards 

Coding conventions such as these are widely accepted to improve code reliability, 
portability and maintainability, although there is little empirical evidence to support 
this (Boogerd & Moonem, 2008). Conventions are said to improve code readability 
therefore allowing engineers to understand the code quickly and thoroughly, since 
80% of a software’s lifetime cost is on maintenance and hardly any software is 
maintained by the original author for its entire lifetime, this is very important (Sun 
Microsystems Inc, 1999). 

During this project several standards for the Python programming language were 
followed, these standards are documented in Python Enhancement Proposals (PEPs). 
PEP 8 ‘A Style Guide for Python Code’ (van Rossum, et al., 2013) is once such 
standard. It specifies coding conventions for all Python code, including the standard 
library. It covers code layout including indentation, line length, blank lines, file 
encoding, imports, use of whitespace, comments, version strings, and naming 
conventions. By following this standard the program can be easily be understood 
and maintained by other developers. 

Another standard that was followed is PEP 257 ‘Docstring Conventions’ (Goodger & 
van Rossum, 2001). “A docstring is a string literal that occurs as the first statement in 
a module, function, class or method definition” (Goodger & van Rossum, 2001). 
These document aspects of the code to aid the understanding of other developers 
therefore increasing code quality and may be extracted by other utilities to form 
documentation for a program. PEP 257 documents the recommended content and 
format of both single and multiline docstrings without dictating any markup syntax 
that may be used.  

5.2 Built 

The vast majority of proposed features in the requirements specification have been 
successfully implemented. However, one proposed feature that could not be 
implemented was identifying domain trusts. This feature was intended to identify 
other domains on the network which may also need to be enumerated. However the 
Windows API function that enables this (DsEnumerateDomainTrusts) has not 

yet been implemented in the pywin32 library. Since the resources of this project 
do not allow for the function to be implemented, this feature has been omitted from 
the current product. 

Inheritance has been heavily used in the application design. For example the 

NetGroupEnum object is a child of the GroupEnumerator object which is itself 

a child of the BaseEnumerator object. This allows features that are common 
between several types of objects to be implemented once and then inherited, for 
example the GroupEnumerator object implements methods to set and retrieve 
the host attribute which are inherited by all of its children. If inheritance was not 
used each object would have to implement this shared functionality individually 
increasing the code base and making it more difficult to maintain. 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 38 
 

Each object has its own specific initialisation that is relevant only to it so is not in the 
parent’s initialisation function. However as the child’s initialisation function 
overrides the parent’s, the child must specifically call the parent’s in order to inherit 
the shared attributes. This is accomplished using the super function at the start of 
object’s initialisation to obtain a proxy object to the parent class and then calling its 
__init__ function. 

An interesting nuance to how this has been implemented means that the child 
object does not need to know the required parameters of any of its parents. The 
child function accepts any number of keyword arguments and passes them directly 
to the parent’s initialisation. After the parent’s initialisation has been executed the 
child can also use the keyword arguments for its own initialisation. This maintains 
the abstraction between the layers of inheritance as the child does not need to know 
anything about its parent. This is demonstrated in Figure 5.1 where the 
GroupEnumerator object uses super to call the __init__ function of its 

parent, in this case BaseEnumerator. 

Since the parent class does not know whether keyword arguments will be supplied 
during initialisation or not, error handling must be employed to prevent a non-
existent argument derailing the application. This is accomplished using the try and 
except statements as shown in Figure 5.1, if the keyword argument host is 

supplied it is assigned to the self._host attribute, however if it not supplied then 
a KeyError will be raised and caught by the except block which assigns an empty 
string literal to self._host. This implementation allows future changes to the 
parent or child class parameters to be realised without altering the other classes. 

 

During the design phase the decision was made to segregate authentication from 
enumeration functions. This was in keeping with the object orientated paradigm and 
helped to ensure that different sections of the program could not interfere with each 
other because they were encapsulated. However this design decision had a large 
impact when implementing the SNMP functions because in SNMP the authentication 
and enumeration functions are bundled together, i.e. every message must contain 
the authentication community string.  

In order to maintain the designed sequence of ensuring authentication before 
attempting enumeration, SNMP authentication was checked using the supplied 
community string and the System OID which is guaranteed to be present on an 

class GroupEnumerator(BaseEnumerator): 
    """Group enumerator class.""" 
    def __init__(self, **kwargs): 
        """Initialise group enumerator class. Extends 
BaseEnumerator.__init__().""" 
        super(GroupEnumerator, self).__init__(**kwargs) 
        self._groups = [] 
        try: 
            self._host = kwargs['host'] 
        except: 
            self._host = "" 
... 

Figure 5.1: Inheriting Initialisation 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 39 
 

SNMP device. If this was successful then the application acted as though a session 
had been created. The SNMP enumeration objects check if authentication was 
successful and if so retrieve the community string form the authenticator object and 
use it to enumerate the desired information. This is not a perfect solution as the 
validity of the community string may change between the time of the check and 
action, resulting in either superfluous SNMP messages which will be denied access or 
information not being enumerated, however it is effective and complies with the 
designs. 

Three standard library modules are used to implement the reporter objects. The first 
is ElementTree, this is a widely recommended lightweight XML processor, 
providing objects to store hierarchical data in memory including methods to both 
parse and build XML documents. This module is used to generate the XML structure 
from the internal data structure.  

The second module saxutils, provides the method escape which encodes the 
characters ‘<’, ‘>’ and ‘&’ as their HTML entities (‘&lt;’, ‘&gt;’ and ‘&amp;’ 
respectively). This is to prevent an attack, known as XML injection attacks, where 
untrusted user input is stored as XML without proper sanitisation. For example in 
this application, if an attacker can cause XML to be returned by one of the 
enumeration objects (perhaps by specifying a XML in a domain group comment) it 
will be inserted into the XML output file. An attacker could insert misleading 
information into the output or use XML external entities to cause denial of service or 
create TCP connections (possibly as part of a distributed denial of service attack 
against another system, or to steal credentials). 

Using the escape method to encode appropriate characters mitigates this 
vulnerability when data is inserted into the text area of an XML tag as this 
application does. However it is not sufficient if the data is inserted into the attributes 
of the tag because an attacker could break out of the attribute using quote 
characters, which are not encoded by the escape method, and manipulate the 
document from within an existing tag. 

This has been implemented by calling the escape method on data before it is used 
to create a sub element using the SubElement method of ElementTree as 
shown in Figure 5.2. Whenever a subelement is created 
_subelement_with_text is called and passed the data, this method creates 

the XML tag then calls the _escape_text method on the data before assigning it 
to the text attribute of the tag. 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 40 
 

 

The ElementTree module has a significant limitation, while it creates well-formed 
XML, it does not include new lines or indentation, making it difficult for a person to 
read. Since output readability is a requirement of this project this deficiency has 
been addressed using another XML module, minidom. This module is minimal 
implementation of the Document Object Model interface. Only three methods from 
minidom are used parseString to parse the XML string output by the 
ElementTree module, createProcessingInstruction which is used to 

add the reference to the XSLT file for formatting, and toprettyxml to provide the 
XML structure as a string containing new lines and indentation making it easier to 
read. 

Two XSLT documents have been created to format the XML output file as HTML in a 
browser, providing many more formatting options and features which can be used to 
make the information more readable than in plain XMl. JavaScript has been used to 
create collapsible sections of data, allowing the user to more easily find the 
information they are looking for. 

class BaseXMLReporter(BaseReporter): 
    ... 
    def _escape_text(self, text): 
        """Convert text to a string and escape it to prevent XML 
injection. 
        WARNING: This function is not sufficient for data in 
attribute values.""" 
        return escape(str(text)) 
 
    ... 
 
    def _subelement_with_text(self, parent, tag, text, attrib={}, 
**kwargs): 
        """Create an xml subelement.""" 
        elem = ET.SubElement(parent, tag, attrib, **kwargs) 
        elem.text = self._escape_text(text) 
        return elem 
 

Figure 5.2: Escaping Data 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 41 
 

Figure 5.3

 
Figure 5.3 shows an example domain enumeration output file opened in a text editor 
and Figure 5.4 shows the same file open in a browser with the style sheet applied. 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 42 
 

 

 

 
Figure 5.3: Output File in Text Editor 

 
Figure 5.4: Output File in Browser 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 43 
 

5.3 Problems 

During the implementation phase it was discovered that not all Windows API 
functions have been implemented within the pywin32 library.  This caused a 
problem, because the designs called for some functions to be used that have not yet 
been implemented. Notably DsBindWithCred was planned to be used for SMB 
authentication as this function establishes a sessions using a specified set of 
credentials to a domain controller. A choice needed to be made between 
implementing the function in Python and using the older, but available, NetUseAdd 
function. The time and human resources available for this project dictated that 
implementing the DsBindWithCred function in Python was not a viable option, 
therefore NetUseAdd was used in its place. The modular, abstracted design of this 
product meant that this did impact the other areas of the program, and allows the 
DsBindWithCred function to be substituted in during a later revision of the code, 
when it becomes available. 

An interesting bug was encountered during development that caused every instance 
of the Group object to have an identical list of members despite the members only 
being assigned to one instance. It took some time to identify the cause of this error 
by stepping through the program but the cause was eventually discovered to be in 
the class declaration of the Group object. As can be seen in Figure 5.5 the 
members parameter has a default value of an empty list which is then assigned to 
self._members, however because this is declared in the method definition, it is a 
class variable and as such is shared between all instances of this object. 

 

To overcome this problem the declaration of the list within the method declaration 
was replaced with None and instead defined within the code block of the method to 
make it an instance variable. As can be seen in Figure 5.6 a Boolean or operation is 
used to assign self._members to the value of members or a new instance of an 

empty list, the effect of this is that if an argument is supplied to the members 
parameter then it will be used, otherwise an empty list will be created.  

 

  

class Group(object): 
    """Object that holds group data.""" 
    def __init__(self, name="", comment="", members=[]): 
        ... 
        self._members = members 
... 

Figure 5.5: Erroneous Group Declaration 

class Group(object): 
    """Object that holds group data.""" 
    def __init__(self, name="", comment="", members=None): 
        ... 
        self._members = members or [] 
... 

Figure 5.6: Corrected Group Declaration 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 44 
 

6 Testing 

6.1 Methodology 

The software was tested at several levels (utilising static and dynamic analysis), 
described by Luo (2001), to determine its quality. The lowest level of testing is the 
unit test that tests the smallest pieces of software possible. When two or more units 
are combined together, integration testing is used. System testing is used to confirm 
end-to-end quality of the entire system based on the requirements specification. 
Finally acceptance testing is carried out when the system is provided to customers or 
users and gives confidence that the system is working as required. 

Static analysis which focuses on determining software quality without actually 
executing it usually using code inspection (Luo, 2001). Static Analysis was used 
continuously while writing the code to reduce the number of bugs introduced due to 
coding errors. This involved reading the code, checking object names and verifying 
the logical flow matched the designs. 

Dynamic analysis requires execution of the application and was selected as an 
appropriate testing style for this project because the development language does 
not require compilation. It therefore takes very little time to run tests, modify code 
accordingly and re-run the tests.  

The software was tested at several levels, described by Luo (2001), to determine its 
quality. The lowest level of testing is the unit test which tests the smallest pieces of 
software possible. When two or more units are combined together, integration 
testing is used. System testing is used to confirm end to end quality of the entire 
system based on the requirements specification. Finally acceptance testing is carried 
out when the system is provided to customers or users and gives confidence that the 
system is working as required. 

6.2 Test Bed 

In order to test the application a controlled environment was required that 
simulated a Windows domain network. Two possibilities presented themselves, 
either a physical or virtual network could be setup and configured. The equipment 
required to implement a physical network made this option cost prohibitive during 
this project. Therefore a virtual network consisting of two Windows servers (2008 R2 
and 2012) were created with Active Directory installed to create a Windows Domain. 
In addition to the active directory service, each server also had the DNS service 
installed as Active Directory relies heavily on DNS to locate objects, and the WINS 
service installed to serve NetBIOS names. Further details on the configuration of the 
test environment can be found in Appendix D. These operating systems were chosen 
for the test bed because they are the two latest releases in the Microsoft Windows 
Server line and are therefore recommended for all current and near future Windows 
domains, and they are available to the author under an educational license. 

 

 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 45 
 

6.3 Tests 

Unit tests were conducted using automated testing by creating appropriate test 
cases with the standard library Python module pyunit. For each of the lowest level 
units in the designs (i.e. authenticators, reporters, and some enumerators), test 
were created to determine their behaviour based on differing input. The first test for 
each unit verifies that the unit operates as expected with expected input, and the 
rest check its reaction to invalid input. 

It was not possible to conduct unit testing of all the enumeration objects because in 
order to function they require authentication to an external host, which requires the 
integration of the authentication objects. For these modules integration testing was 
carried out using pyunit test cases which create an authentication object during 
their setup process and pass it to the enumeration object as required. 

Further integration testing was conducted manually using the application from the 
command line to determine if the components work together correctly and all 
necessary command line arguments are present. 

Test cases created from the requirements specification were completed manually to 
test the application at the system level. 

Another system level test that was devised discovered the precision and recall of the 
application. Recall is the proportion of relevant information, and is used to measure 
how well the system retrieves all relevant information (Maarek, et al., 1991). 
Precision is defined as the proportion of the retrieved material that is relevant and is 
therefore used to measure how well the system retrieves only the relevant 
information (Maarek, et al., 1991). Powers (2011) defines recall as the proportion of 
Real Positive (RP) cases that are correctly Predicted Positive (PP) and precision as the 
proportion of Predicted Positive (PP) cases that are correctly Real Positives (RP); 
where the system’s Predicted Positive results can be categories as either True 
Positives (TP) or False Positives (FP). See equations (1) and (2) respectively.  

Recall = TP / RP 
(1) 

Precision = TP / PP 
(2) 

The Real Positive cases for each of the types of information that the application is 
capable of enumerating (e.g. domain names, group names) within the test bed are 
known and shown in Appendix D. 

Once the application passed the Alpha testing phase described above it was released 
to a small group of Beta testers. These Beta testers are computer security 
professionals who were asked to use the software in place of their regular Windows 
domain enumeration tools and feedback issues they encountered along with their 
general opinion of the tool. 

 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 46 
 

6.4 Results 

The testing results are shown in Appendix E, however this section will highlight some 
of the key findings of the testing. 

The unit and integration tests demonstrated that every unit of the application work 
together and behave as expected when provided with valid and invalid input with 
the exception of the FromMaster object. The FromMaster object fails to 
enumerate domain names from the master browser because it has not been 
implemented. This decision was taken when it became apparent that identifying the 
Master Browser without knowing the domain name required every IP address in the 
network range to be queried sequentially until the Master Browser was found. If 
implemented this would have had a significant negative impact on the performance 
of the tool because of the amount of time required to query such a volume of hosts 
and the timeouts that would be encountered during the process. 

The system level tests of the program showed that the application meets all of the 
essential requirements and all but one of the desirable requirements specified at the 
start of the project. The desirable requirement “Identify domain trusts” was not met 
because implementing this functionality required the use of a Windows API function 
that is not yet available in the pywin32 library. The documentation was followed 
on a clean build to ensure it accurately described the requirements of the application 
and its usage. 

As this system retrieves information the measurements of precision and recall were 
calculated to determine reliability. The results show that the application’s precision 
in every area is ‘1’. In all areas the recall of the application is also calculated to be ‘1’ 
with the exception of user account information enumeration which is calculated to 
be ‘0.931’. These values indicate that on the whole the application will recall almost 
all of the relevant information and all of the information it does retrieve will be 
relevant. 

There were several pieces of constructive feedback from the Beta testers. The first 
and most difficult to implement was from the Beta testers that used a Linux based 
operating system as their primary machine and would like to have the tool work 
natively rather than within a virtual Windows machine. This is a valid opinion, 
however operating on a Linux platform was defined within the excluded requirement 
for this project due to time constraints. Based on this feedback later versions of this 
tool should have Linux support as a requirement. 

A couple of errors were also identified during the Beta test. First, an error that 
resulted in ungraceful exit of the program when enumerating shares was 
encountered. Investigation of this error found that the issue was caused by the share 
type returned during execution not being listed in the Microsoft documentation and 
was therefore not handled by the application. To address this error the share 
enumeration section of the program was altered: when looking up the numerical 
share type identifier to find the associated string a default value is used so that a 
KeyError will never be raised (see Figure 6.1) and the share type that was 
identified during testing was added to the list. 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 47 
 

 

Another error that was identified involved the targeting parameters. It was found to 
be possible to cause an error in the program by specifying the domain controller 
without the domain name when performing automated domain enumeration. This 
was found to be an oversight in the input validation code, while the specific 
enumeration function’s parameters where checked to ensure prerequisite 
information was provided, the automated enumeration functions were not. The 
application was updated to contain validation code which prints an error and exists 
gracefully if the targeting parameters are not correct. 

A potential security issue was also identified during the Beta testing. The password 
parameter accepts the password on the command line, this causes it to be stored in 
the command history of the host and it is visible to anyone looking at the user’s 
screen. In order to mitigate this issue the input of the application was changed so 
that instead of supplying the password as an argument on the command line it is 
supplied by the user when the program runs without echoing it to the screen. This is 
accomplished using the getpass function of the getpass standard Python library 
for simplicity and portability. Figure 6.2 shows the code used to either get the 
password from the user if the command line arguments indicated that a password 
will be supplied or set it to the default value of an empty string. An example of the 
prompt displayed to the user as a result of this code is shown in Figure 6.3. 

 

 

Some Beta testers commented that while the documentation was accurate with 
regard to the command line parameters, some of the parameters could have clearer 
names most notably domain and domain_name which have very different 
functions but are easily confused. For ease of use these and similar parameters have 

been renamed, for example domain is now auth_domain and domain_name is 

domain making it clear which parameter is for the authentication credentials and 
which is not. 

A few suggestions were also made regarding the output. First the account policies 
are stated in seconds, however this results in very large numbers that must be 
converted to larger units and it was therefore suggested that these calculations be 
done by the application. In order to deal with this request the low level function that 

share_types.get(share_info['type'], "UNKNOWN_SHARE_TYPE") 
 

Figure 6.1 Share Type Default Value 

if args.auth_passwd: 
        # Prompt for the password without echoing. Using default 
prompt "Password: " 
        auth_passwd = getpass.getpass() 
    else: 
        auth_passwd = "" # Default password 
 

Figure 6.2 Password Handling with getpass() 

 

Figure 6.3 Password Handling Command Line 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 48 
 

retrieved information was altered to convert the values before storing them and the 
XSLT file was altered to state the unit of each. 

Another output suggestion was that the information should be displayed as a table 
rather than in collapsible sections. While this was not implemented during the 
project it would be possible by creating a new style sheet to display the output to 
the particular user’s taste without altering any of the code of the application itself or 
affecting other user; the new style sheet could also be applied to existing output files 
without rerunning the application. This flexibility is one of the advantages of keeping 
the XSLT file separate from the generated XML.  

An issue with the collapsible areas was also identified during Beta testing. Although 
the sections both collapsed and expanded each action also resulted in moving to the 
top of the page. To fix this issue the XSLT file was altered so that the hyperlink used 
to invoke the collapse function referenced the JavaScript void function instead of the 
anchor of the page. 

Other comments about the application were very positive with many stating that 
they would find this tool very useful during their work and the code and design was 
of a high standard and could be integrated into other penetration testing systems 
(see Appendix F). However there were also suggestions to increase the amount of 
comments and error handling within the code to increase readability and 
robustness. 

6.5 Testing Conclusions 

The tests conducted have been designed to identify as many faults as possible so 
that they can be removed before completion of the project. 

Syntax errors introduced by typographical mistakes appear to have been eliminated 
because the program successfully runs through tests which cover every code path 
within the application without raising any syntax errors.  

Logical errors that may have been included at the design phase have also been 
removed as is evidenced by the fact that the application behaves as expected in 
every test with no infinite loops or other logical defects. 

Interface faults are a particular concern in this case as the system is heavily reliant 
on correct usage of APIs in order to enumerate information. The enumeration unit 
tests show that this type of fault is not present by demonstrating that each API in 
use is receiving the correct parameters and returns the desired information. 

The acceptance testing performed by the Beta testers indicates that the tool is useful 
for its intended purpose and with the stated modifications can be easily used. 

It is possible that some faults have persisted through the testing phase of this 
product because the testing environment used may not accurately represent a 
genuine Windows domain or the small number of domains used by the Beta testers. 
This is to be expected since many Windows domains consist of a multitude of 
groups, user accounts and servers which may present unique issues which cannot be 
realistically simulated using the resources allocated for this project and may not 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 49 
 

have occurred during Beta testing. When used in a large variety of genuine 
environments the range of data that the tool encounters may reveal issues with data 
handling or performance that were not identified during testing. 

Performance testing is one category of testing that was not carried out, because the 
requirements specification did not stipulate any performance measures that the tool 
had to meet. 

During the course of testing it was not possible to use fuzzing techniques to identify 
security vulnerabilities within the application because this would require creating a 
specialist program which could respond to the application’s queries with fuzz strings. 
The time and human resources of this project did not extend to creating the fuzzing 
tool, however it should be considered in future testing schemes. 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 50 
 

7 Evaluation 

7.1 Evaluation of the Product 

Two factors were considered when evaluating the product, build quality and fitness 
for purpose. 

In terms of build quality the testing that has been conducted indicates that the 
product is able to handle both valid and invalid input gracefully. At no point during 
testing did the product terminate unexpectedly, this is due to the use of exception 
handling at every interface which allows exceptions raised by other modules to be 
handled gracefully, performing ‘clean up’ actions and continuing with other 
functions. The application was also able to handle exceptions raised by external 
modules, for example the pywin32 function NetGroupEnum raises an exception 
when access is denied, if unhandled this would cause the program to cease, however 
it is caught and changes the flow of the program as appropriate. 

Another advantage of this tool’s build is the use of inheritance which eases code 
maintenance by reducing code duplication as shared functionality is written once 
and then inherited. For example all of the group enumeration objects inherit a 
function to set members, therefore if at a later date the format of storing members 
changes this function can be changed once in the parent function but affect every 
child function. 

The use of inheritance and abstraction also allows features to be added at a later 
date with minimal changes to the rest of the code base. For example a new method 
of enumerating domain groups would only require a new object that inherits the 
GroupEnumerator object to be written and a single line to be added to the 
GroupEnumerationController. 

It is also possible to use new services to enumerate information if an appropriate 
authenticator is created. This is possible due to the abstraction that is built into the 
product design, as long as the new object presents the appropriate interface it can 
be included with very little effort. This allows the product to continue to be 
improved without large changes to the code base therefore improving 
maintainability.  

Another key feature of the design, and one of the requirements, is the paresable yet 
readable output file. The output file uses XML as the output format, this format can 
be trivially parsed using a wide variety of programming languages, and therefore the 
output of this tool can be programmatically used by other scripts. The XSLT file that 
is distributed with the program is used to transform the XML file into HTML 
dynamically in the browser making it easier to read. The XSLT file is independent of 
the code within the application, and therefore it can be altered to display the 
information in a more pleasing manner with absolutely no change to the application. 
This is an advantage as users can tailor the display of the enumerated information to 
suit their specific needs, for example a user may decide that the only user account 
information they wish to view in the browser is the username and comment which 
can be accomplished by commenting out a section of the XSLT file.  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 51 
 

The PEP8 style guide for Python code has been followed for this project with the 
exception of the maximum line length recommendation. This makes it much easier 
for another developer to understand the code as common conventions are used 
throughout. The line length recommendation has been ignored in this case because 
it was felt that restricting the line to 80 characters would result in practically every 
line of code spanning two or more lines which would reduce readability, this is 
stated within PEP8 as an acceptable reason to ignore a guideline. 

Part of the aim of this project was to create a product to store information from 
each run which can be used to improve subsequent runs. When the user manually 
specifies a group name this information will be retained, if the user indicates to do 
so, and used during subsequent automated enumeration to gather the members of 
specific groups regardless of other filtering. 

There are several positive and negative aspects that arise when considering the 
product’s fitness for purpose. 

On the whole the product can be considered fit for purpose because the system level 
testing showed that it meets all of the essential criteria defined in the requirements 
specification along with the majority of the desirable criteria. It also handles both 
NetBIOS and DNS style domain and host names allowing it to be used in both new 
and legacy Windows domains. 

The testing demonstrated that the tool will perform well in its role as an information 
retrieval tool. It had a high level of precision and recall indicating that it will retrieve 
the vast majority of relevant information and the information it does retrieve will 
likely be relevant. 

However there are a number of limitations to this tool that became evident during 
the testing phase. 

Firstly, although the application can handle both NetBIOS and DNS style names it 
currently cannot link the two together, so in mixed technology domains information 
is enumerated once for the NetBIOS name and once for the DNS name which results 
in duplicate information existing in the output file. While duplication of information 
is inconvenient it is preferable to missing information entirely and can often easily be 
identified by the user when reading the output.  

Another drawback of the tool is that it does not provide a means for the user to 
specify the service to use for enumeration which may result in extraneous traffic 
crossing the network. This drawback stems from the abstraction that is built into the 
application, only the lower enumeration levels require any understanding of how the 
information is enumerated so the higher levels cannot allow or disallow specific 
services. 

However the focus of this tool is enabling the information to be retrieved rather than 
allowing the user to specify an exact method of how it should be retrieved. Since the 
product makes a single authentication attempt per protocol and then enumerates 
information using the corresponding methods if it succeeded, a work-around for this 
issue could be for the user to supply invalid authentication credentials for the 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 52 
 

protocol they wish to disable, this would result in a single failed authentication 
attempt and information not being enumerated using that protocol. 

Another potential issue with the functionality of this tool is that it does not provide a 
means for the user to specify a number of hosts to enumerate, although it does 
perform automated enumeration of a number of hosts that it finds. While 
performing enumeration on a list of user supplied hosts was not identified as a 
requirement at the start of the project and therefore cannot be considered a failing 
of the product, feedback from users may require this feature to be added in later 
versions.  

Three objectives directly relating to the product were defined at the start of the 
project. 

Objective 5 required design diagrams for the structure and behaviour of the 
application to be created. This objective has been met in full, design diagrams were 
created and followed to create application that uses object orientation and 
abstraction. These are included in Appendix C. 

Objective 6 stated that the designs should be implemented in the chosen 
development language utilising a source code management solution and following 
the MS SDL. This objective has been met, the designs have been implemented in the 
Python programming language and Git was used to manage the source code. The MS 
SDL has been considered throughout the project process to help create an end 
product that has fewer security vulnerabilities than would otherwise be the case. 

Objective 9 required user documentation to be generated for the application. This 
objective has also been fulfilled; the documentation takes the form of a ‘readme’ file 
that is to be distributed with the application. It contains a description of the 
application, its requirements, and its usage, with examples of the different command 
line parameters that can be used to perform enumeration. The Beta testers were 
able to make use of the application without any assistance from the author implying 
that the documentation is sufficient. 

7.2 Evaluation of the Project Process 

This project was the author’s first experience of a significant software development 
project and was therefore at times very challenging, requiring individual learning of 
new skills and concepts in a short time frame. 

7.2.1 Achievement of Relevant Objectives 

One of the objectives of this project was to create a list of requirements for the tool. 
This required careful consideration of the literature review that was conducted at 
the start of the project to identify key areas that a new tool in an existing area must 
cover in order to be useful in the field. These requirements were then expressed 
using the ‘IEEE Recommended Practice for Software Requirements Specification’, 
although this is not a standard it is widely used as it provides clear guidance on the 
content, and qualities of a software requirement specification. 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 53 
 

Another objective of the project was to enhance the author’s knowledge of the 
Windows API using online documentation. While this proved to be challenging due 
to the varied quality and detail of the documentation, it was successfully 
accomplished leaving the author with a wider understanding of the different 
Windows API functions, including their requirements for input and output data 
structures, and the varied levels of authentication required to use them. 

Objective 8 states that an analysis of the testing results was to be undertaken to 
identify the functional and non-functional aspects of the application. This objective 
has been met; the different aspects of the application have been verified using the 
testing results. These results have shown that the product is suitable for its intended 
purpose as it meets its requirements and has a high level of precision and recall. 

At the commencement of this project the author had a fair understanding of the 
Python programming language but knew that a project of this magnitude would 
require a higher level of skill. Therefore one of the objectives of the project was to 
enhance the developer’s skills in the selected development language. Using online 
resources the developer was able to learn to utilise the more advanced features of 
the Python language and its conventions to create a code base that meets the 
product requirements while being maintainable by any Python developer. 

From the outset the author’s lack of software engineering background was identified 
and objectives put in place that identified key milestones in a software engineering 
project, namely design diagrams and testing. This required the author to learn 
appropriate design and testing methodologies and tools, particularly UML which was 
completely new to the author but used extensively to design the application.  

7.2.2 Suitability of Tools and Techniques 

The selected programming language, Python, proved to be a suitable choice for this 
project. The syntax made the code easy to read but offered the advanced notions of 
object orientated languages and as the interpreter handles details that must be 
explicitly dealt with in lower level languages it had a low development time. The 
downside of this language is that it has a higher execution time than the alternative 
compiled languages, however this was not raised as an issue by the Beta testers but 
they did note that there was a noticeable delay when authenticating with incorrect 
credentials. This delay is caused by the timeout implemented by the remote server 
and is identical regardless of the language the client is developed in.  

One issue that was encountered when using the Python programming language was 
that not all Windows API functions were implemented in the pywin32 library, this 
resulted in some intended features not being implemented. If this project were to be 
repeated this should be taken into consideration when selecting the development 
language as the full set of functions is available in both the C and C++ programming 
language, whereas additional development is required to utilise them in Python. 

A number of tools were used during the course of this project with varying degrees 
of success. Microsoft Visio was used to create UML diagrams, this tool offers the 
basic features required to create simple UML diagrams, and integrates well with 
Microsoft Word allowing the diagrams to be explained in the report. However the 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 54 
 

drawback to this tool is that it does not offer the full range of features defined in the 
UML specification so is not suitable for extremely complicated or intricate diagrams 
that include complex models. An additional consideration was cost, the author 
already owned a copy of Microsoft Visio so no additional expenditure existed, but 
tools that fully implement the UML specification have a significant price or only offer 
limited functionality in the community version. 

With these respects in mind, it is the author’s opinion that Microsoft Visio was a 
suitable tool to use for the design diagrams in this project. However if the project 
was to be extended with additional features that increased the complexity, a tool 
that offers the additional features to handle this should be used. 

The Microsoft Secure Development Lifecycle MSSDL was an asset during the project 
because it required the author to consider the security implications during each 
stage of development rather than as a single consideration at the end of the project. 
This increased the amount of time that was spent on securing the application and 
therefore the security of the finished product. 

The Git source code management system was a useful tool during this project as it 
easily allowed off site backup of the source code along with revision history. This 
allowed the code to be rolled back to a known working state at any time during 
implementation of a feature if it was found to be problematic. Git was found to be a 
reliable and convenient method of managing source code for this project and the 
author fully intends to use this system for future software engineering projects. 

7.2.3 Managing Project Work 

This project has been a new experience for the author as it is the first time they have 
conducted a significant piece of software engineering. It has involved designing, 
implementing and testing a piece of software while maintaining documentation. A 
key factor of this project was time management, the final deadline for the completed 
product and report was fixed so the work had to be completed on time. In order to 
facilitate this work that needed to be carried out was planned, and this schedule was 
adhered to as much as possible. If at any point the work fell behind the schedule 
extra hours were completed in order to finish on time. 

When completing a piece of work individually it is always tempting to neglect the 
documentation since no other developers exist to share it with during the project. 
However in this case the author maintained all required documentation for the 
project so that it could be referred to by the author at later stages and by other 
developers in the future. 

In a team of developers there is usually a range of experience to draw from when 
implementing novel features, however in this project there was a sole developer 
with a limited set of experience. This meant that the programming was a constant 
learning experience where unusual requirements necessitated the author 
researching the appropriate solution either by searching documentation or by 
experimentation. This was particularly evident when using the pywin32 interface 
to the Windows API since at times neither set of documentation is entirely clear on 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 55 
 

the parameters that are required, so trial and error were required to obtain the 
expected arguments for the functions. 

7.2.4 Personal Performance and Problem Handling 

During development there were a number of problems in the application. Along with 
the problems already discussed there were also typographical errors which caused 
the application to crash and logic flaws which caused subtle malfunctions in the 
program. Each of these issues was tracked from the symptoms to the cause by 
examining the program’s operation in relation to the source code to identify the 
errors that led to the anomalous behaviour. When the cause was discovered a 
method of eradicating the error was devised and examined to ensure it would not 
introduce any problems in the rest of the application. The solution was then 
implemented and tested both to ensure that the original problem had been removed 
and no new problems had been introduced. 

This project can be considered the author’s largest piece of academic work to date 
and has necessitated the development of several skill areas. This has included 
conducting a literature review to critically analyse existing products and determine 
requirements. Design, implementation and testing methodologies and technologies 
were also learned to a significant level in order to complete this project and will be 
useful for future software engineering tasks. Use of documentation for this type of 
project has also been learnt including proposal and evaluation documentation. 
Significantly a major report for this project has been completed; this type of report is 
likely to be required for the author’s career and will therefore be advantageous. 

One problem encountered during this project was Windows API functions not being 
available in the pywin32 library. This was not identified during the design phase 
and therefore resulted in some features of the application being impossible to 
implement within the time frame of the project. In the future the author will 
endeavour to identify situations such as this early on in the project and allocate time 
to devise a solution. For example the required Windows API features could have 
been made available by implementing them in C++ using the ctypes library and 
providing a Python interface if sufficient time had been allocated. 

7.2.5 Project Plan Reflection 

On the whole the project plan worked well as an approximate guide as to how much 
time needed to be spent on each task in order to achieve the objectives. However 
there were some aspects of the plan that underestimated the amount of time 
required. For example conducting tests of the application within the test bed was 
assigned only 3 hours, this failed to take into account the amount of time required to 
acquire, install and configure Windows Servers in a test environment.  

These underestimates where counter balanced by tasks which were assigned 
resources too generously, notably generation of user documentation was assigned 4 
hours, but it only took a fraction of this time. This combined with the contingency 
time that was built into the plan to account for unforeseen delays allowed the 
project to keep largely to the devised schedule and complete before the deadline. 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 56 
 

7.2.6 Legal, Ethical and Professional Issues 

When creating a computer security tool such as this the ethical issue of malicious use 
often arises. The argument being that creating a tool that an individual can use for 
nefarious purposes is wrong and therefore should not be done. However many 
common network administration tools can also be used maliciously by suitably 
motivated parties but these are required for the administrator to perform their role 
efficiently. The same is true for this tool, it may be able to be used for malicious 
purposes, but it can and should be used by administrators and computer security 
practitioners to identify flaws in their systems before an attacker does so that they 
can be properly mitigated. 

The Computer Misuse Act (Great Britain, 2006) states that 1) “unauthorised access 
to computer material” and 2) “unauthorised access with intent to commit or 
facilitate commission of further offences” are illegal. Since this tool accesses 
information on the domain it could be used to break the Section 1 and as this is an 
enumeration tool it is by definition a precursor to further activities and could 
therefore be used to contravene Section 2. Therefore during the Alpha testing phase 
of the application it was not possible to test the tool in a genuine environment as it 
was not possible to get permission and conducting the tests without permission 
would have resulted in breaking the Act. In order to stay within the law the Alpha 
testing phase was conducted in a virtual domain specifically created for the purpose 
and owned by the author. 

During Beta testing the application was used by professional computer security 
experts during genuine assessments, this means that it was used in a very realistic 
scenario but the results it retrieved are covered by the non-disclosure agreement 
between the tester and the client and can therefore not be shared with the author. 
The feedback for the Beta testing phase therefore does not contain any quantitative 
data and instead relies on the qualitative feedback of the testers. 

7.3 Recommendations 

There are a number of recommendations that can be made at the culmination of this 
project. 

First, during the acceptance testing phase a number of suggestions were received 
regarding improvements to the application for example the most significant of which 
were Linux support and associating DNS and NetBIOS style names. 

This tool, with some redevelopment, would also be suitable as a plugin of a larger 
framework used in computer security assessments. This is because the information 
enumerated could be used by other plugins for example a password auditing tool 
could use the usernames and lockout timings to refine its activities in order to 
prevent disruption. 

The product could also be extended with new methods of enumeration including 
different protocols and information to enumerate. For example LDAP may be able to 
be used to gather information from Active Directory and is occasionally available 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 57 
 

over the internet. Extending this product to include LDAP enumeration may extend 
the use cases of this tool from internal security assessments to external. 

This application may also be applied to the area of network monitoring with some 
alterations. The application retrieves the incorrect password count and the last 
successful logon time, with some additional code and regular execution this tool may 
be used to detect a brute force attacks against domain users. 

Finally, while this tool is intended for use by ethical computer security professionals, 
it has been noted that the information that can be retrieved from the Windows 
domain is useful to attackers. Further work should therefore be carried out to ensure 
that products and procedures to identify Windows domain enumeration both exist 
and are highly effective. 

7.4 Conclusions 

During this project a new tool for enumeration of a Windows domain has been 
designed and created based on research of existing tools. 

An analysis of the existing tools and their limitation has been undertaken which 
identified a need for a new domain enumeration tool to address the limitations of 
existing tools. 

This analysis informed the requirements specification for the tool that was created. 

An appropriate design methodology, software development lifecycle and 
programming language were selected in order to create an application that meets 
the requirements specification.  

The designs for the application were created using UML, this included use cases, 
sequence diagrams and class diagrams. These designs were then implemented using 
appropriate design patterns and following suitable standards for the selected 
programming language.  

A testing strategy was developed to provide assurance of the application, with 
particular regard to the functional aspects of the application and the objectives of 
the project. With the testing conducted the results were then analysed to determine 
whether the requirements of the product and objectives of the project were met. 

Finally an evaluation of the product and project process was undertaken to identify 
the strengths and weaknesses of the product and the personal and professional 
growth of the author. 

The culmination of this project is enhanced skills in research, design and 
implementation of a Windows domain enumeration tool in the Python language. All 
the project objectives have been met in full. The product has been tested and 
proven to be fit for purpose and of a high build quality emanating from active 
professionals in the computer security industry. 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 58 
 

8 References 

Agerbo, E. & Cornils, A., (1998) How to preserve the benefits of design patterns. ACM 
SIGPLAN Notices, 33(10), pp. 134-143. 

Allen, R., Lowe-Norris, A. G. & Richards, J., (2006) Active Directory. 3rd ed. 
s.l.:O'Reilly. 

Berghel, H. & Hoelzer, D., (2005) Pernicious ports. Communications of the ACM - The 
semantic e-bussiness vision, 12 December, 48(12), pp. 23-30. 

Bergland, G. D., (1981) A Guided Tour of Program Design Methodologies. Computer, 
14(10), pp. 13-37. 

Birkholz, E. P., (2002) How to Fix A Broken Window. Las Vegas, Black Hat. 

Boogerd, C. & Moonem, L., (2008) Assessing the value of coding standards: An 
empirical study. Beijing, China, IEEE International Converence on Software 
Maintenance, pp. 227-286. 

Chacon, S., 2009. Pro Git. 1st ed. s.l.:Apress. 

Chi-Liang Ni, D., (1997) Enumeration and traceability tools for UNIX™ and 
WINDOWS™ environments. Journal of Systems and Software, 39(1), pp. 15-25. 

Cooper, R., (1997) ‘[NTSEC]’ CPU 100% Update (fwd), ISS NT Security Mailing List, 

28/01. Available at: http://diswww.mit.edu/menelaus/bt/3980 [Accessed: 15 

October 2013] 

Davis, A., (2013) Revealing Embedded Fingerprints: Deriving Intelligence from USB 
Stack Interactions. Las Vagas, Defcon. 

Dong, J. & Yang, S., (2003) Visualizing design patters with a UML proile. Auckland, 
New Zealand, IEEE, pp. 123-125. 

Gamma, E., Helm, R., Johnson, R. & Vlissides, J., (2012) Gang of Four Design Patterns 
Reference Sheet. [Online] Available at: 
http://www.blackwasp.co.uk/GangOfFour.aspx [Accessed 19 November 2013]. 

Goodger, D. & van Rossum, G., (2001) PEP 257 -- Docstring Conventions. [Online] 
Available at: http://legacy.python.org/dev/peps/pep-0257/ [Accessed 23 February 
2014]. 

Great Britain, (2006) Computer Misue Act 1990: Elizabeth II. Chapter 18 as amended 
by the Police and Justices Act 2006: Elizabeth II. Capter 48.. s.l.:s.n. 

ISECOM, (2010) Open Source Security Testing Methodology Manual. 3rd ed. 
s.l.:ISECOM. 

Kernighan, B. W. & Ritchie, D. M., (1988) The C Programming Language. 2nd ed. 
USA: Prentice Hall. 

http://diswww.mit.edu/menelaus/bt/3980
http://www.blackwasp.co.uk/GangOfFour.aspx
http://legacy.python.org/dev/peps/pep-0257/


Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 59 
 

Kessler, G. & Shepard, S., (1997) RFC 2151 - A Primer On Internet and TCP/IP Tools 
and Utilities. [Online] Available at: http://xml2rfc.tools.ietf.org/html/rfc2151 
[Accessed 5 November 2013]. 

Kitchenham, B. & Carn, R., (1990) Research and Practice: Software Design Methods 
and Tools. In: Psychology of Programming. s.l.:European Association of Cognitive 
Ergonomics and Academic Press, pp. 271-284. 

Larman, C., (2004) Applying UML and Patterns: An Introduction to Object-Orientated 
Analysis and Design and Iterative Development. 3rd ed. Westford, Massachusetts, 
US: Addison Wesley Professional. 

Lauristen, J., (1999) NetViewX. [Online] Available at: 
http://www.ibt.ku.dk/jesper/netviewx/ [Accessed 29 October 2013]. 

Lipner, S., (2010) Security development lifecycle. Datenschutz und Datensicherheit - 
DuD, 34(3), pp. 135-137. 

Luo, L., (2001) Software testing techniques. Institute for Software Research 
International Carnegie Mellon University Pittsburgh, Volume 19, pp. 1-19. 

Lutz, M., (2006) Programming Python. 3rd ed. USA: O'Reilly. 

Lutz, M., (2013) Learning Python. 5th ed. United States of America: O'Reilly Media 
Inc. 

Maarek, Y. S., Berry, D. M. & Kaiser, G. E., (1991) An information retrieval approach 
for automatically constructing software libraries. IEEE Transactions on Software 
Engineering, 17(8), pp. 800-813. 

Manadhata, P. K. & Wing, J. M., (2011) An attack surface metric. IEEE Transactions 
on Software Engineering, 37(3), pp. 371-386. 

McClure, S., Scambray, J. & Kurtz, G., (2009) Hacking Exposed Network Security 
Secrets & Solutions. 6th ed. United States: Mc Graw Hill. 

McClure, S., Scambray, J. & Kurtz, G., (2009) Hacking Exposed: Network Security 
Secrets & Solutions. 6th ed. s.l.:McGraw-Hill. 

Melber, D., (2005) Auditing User Accounts. Internal Auditing, 20(6), pp. 41-44. 

Melber, D., (2011) Using LDP to Enumerate Active Directory Information. Internal 
Auditing, 26(6), pp. 40-44. 

Microsoft, (2003) RPC Technical Reference: Remote Procedure Call (RPC) [Online] 
Available at: http://technet.microsoft.com/en-us/library/cc759499.aspx [Accessed 
20 November 2013]. 

Microsoft, (2012) Windows Internet Name Service (WINS) Overview. [Online] 
Available at: http://technet.microsoft.com/en-us/library/hh831671.aspx [Accessed 
20 November 2013]. 

http://xml2rfc.tools.ietf.org/html/rfc2151
http://www.ibt.ku.dk/jesper/netviewx/
http://technet.microsoft.com/en-us/library/cc759499.aspx
http://technet.microsoft.com/en-us/library/hh831671.aspx


Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 60 
 

Microsoft, (2013) Microsoft Security Development Lifecycle. [Online] Available at: 
http://www.microsoft.com/security/sdl/default.aspx [Accessed 13 November 2013]. 

Object Managment Group, (2012) OMG Unified Modeling Language TM (OMG UML) 
Version 2.5 FTF - Beta 1. [Online] Available at: http://www.omg.org/spec/UML/2.5 
[Accessed 14 October 2013]. 

O'Dea, M., (2003) Hack Notes Windows Security Portable Reference. 1st ed. 
Emeryville, California: McGraw-Hill/Osborne. 

Powers, D. M., (2011) Evaluation: from precision, recall and F-measure to ROC, 
informedness, markedness & correlation. Joournal of Machine Learning 
Technologies, 2(1), pp. 37-63. 

Prechelt, L., (2000) An empirical comparison of C, C++, Java, Perl, Python, Rexx, and 
Tcl. IEE Computer, 33(10), pp. 23-29. 

Saltzer, J. H. & Schroeder, M. D., (1975) The Protection of Information in Computer 
Systems. Proceedings of the IEEE, 63(9), pp. 1278-1308. 

Samba Team, (2010) rpcclient. [Online] Available at: 
http://www.met.rdg.ac.uk/~it/cgi-bin/man.cgi?section=1&topic=rpcclient [Accessed 
3 November 2013]. 

Samuel, P. & Mall, R., (2009) Slicing-Based Test Case Generation from UML Activity 
Diagrams. ACM SIGSOFT Software Engineering Notes, 34(6), pp. 1-14. 

Scambray, J. & McClure, S., (2008) Hacking Windows Exposed. 3rd ed. United States: 
McGraw Hill. 

Shalloway, A. & Trott, J. R., (2004) Design patterns explained: a new perspective on 
object orientated design. 2nd ed. s.l.:Perason Eductaion. 

Singleton, T. W., (2008) What Every IT Auditor Should Know About Access Controls.. 
Information System Control, Volume 4. 

Skoudis, E., (2013) Plunder Windows Account Info via **Authenticated** SMB 
Sessions. [Online] Available at: http://pen-testing.sans.org/blog/pen-
testing/2013/07/24/plundering-windows-account-info-via-authenticated-smb-
sessions [Accessed 29 October 2013]. 

Spinellis, D., (2006) Choosing a programming language. Software, IEEE, 23(4), p. 
62.63. 

Stroustrup, B., (1997) The C++ Programming Language. 3rd Edition ed. s.l.:Addison-
Wesley Professional. 

Stuttard, D. & Pinto, M., (2008) The Web Application Hacker's Handbook. 1st ed. 
Indianapolis, Indiana: Wiley. 

http://www.microsoft.com/security/sdl/default.aspx
http://www.omg.org/spec/UML/2.5
http://www.met.rdg.ac.uk/~it/cgi-bin/man.cgi?section=1&topic=rpcclient
http://pen-testing.sans.org/blog/pen-testing/2013/07/24/plundering-windows-account-info-via-authenticated-smb-sessions
http://pen-testing.sans.org/blog/pen-testing/2013/07/24/plundering-windows-account-info-via-authenticated-smb-sessions
http://pen-testing.sans.org/blog/pen-testing/2013/07/24/plundering-windows-account-info-via-authenticated-smb-sessions


Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Page 61 
 

Sun Microsystems Inc, (1999) Java Code Conventions. [Online] Available at: 
http://www.oracle.com/technetwork/java/codeconventions-150003.pdf [Accessed 
23 February 2014]. 

Torr, P., (2005) Demystifying the threat modeling process. IEEE Security & Privacy, 
3(5), pp. 66-70. 

United States v. Microsoft - Review of the Final Judgements by the United Steates 
and New York Group (2007) 98-1232 (CKK)  

van Rossum, G., Warsaw, B. & Coghlan, N., (2013) PEP 8 -- Style Guide for Python 
Code. [Online] Available at: http://legacy.python.org/dev/peps/pep-0008/ [Accessed 
23 February 2014]. 

Veerasamy, N., (2009) ‘High-level Methodology for Carrying out Combined Red and 
Blue Teams’, Second International Conference on Computer and Electrical 
Engineering. Dubai, 28-30 December, doi: 10.1109/ICCEE.2009.177 

William Collins and Sons Co. Ltd, (1987) Collins English Dictioanry and Thesaurus. 1st 
ed. Glasgow: Collins. 

Wirfs-Brock, R. J. & Johnson, R. E., (1990) Surveying current research in object-
orientated design. Communications of the ACM, 33(9), pp. 104-124. 

 

9 Appendices 

 

http://www.oracle.com/technetwork/java/codeconventions-150003.pdf
http://legacy.python.org/dev/peps/pep-0008/


 

Appendix A: Terms Of Reference 

 

Project Terms of Reference 
CM0645: Individual Project 

 

 

Nettynum 

A Windows Domain Enumeration Tool 

Software Engineering Project 

 

 

 

Student Name: Oliver Morton 

Student Number: W10005202 

Course: Ethical Hacking for 

Computer Security BSc 

(Hons) 

Supervisor: Dr Christopher Laing 

Second Marker: Dr Fouad Khelifi 

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton TOR Page 1 
 

Contents 

1. Project Title ............................................................................................................ 2 

2. Background to Project ........................................................................................... 2 

3. Proposed Work ...................................................................................................... 4 

4. Aims of Project ....................................................................................................... 5 

5. Objectives............................................................................................................... 5 

6. Skills ........................................................................................................................ 5 

7. References ............................................................................................................. 6 

8. Resources – Statement of Hardware / Software Required ................................... 7 

9. Structure and Contents of the Project Report ....................................................... 8 

10. Marking Scheme ............................................................................................... 10 

 Project Type ............................................................................................... 10 10.1.

 Project Report ............................................................................................ 10 10.2.

 Product ...................................................................................................... 10 10.3.

11. Project Plan – Schedule of Activities ................................................................. 11 

 

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton TOR Page 2 
 

1. Project Title 

Nettynum – A Windows Domain Enumeration Tool 

2. Background to Project 

The Microsoft Windows operating system is extremely ubiquitous in both home and 
corporate environments to a point where it has been “determined Microsoft had a 
monopoly in the marked” (United States v. Microsoft - Review of the Final 
Judgements by the United Steates and New York Group, 2007).  

Enumeration is an information gathering technique that probes identified services 
for known weaknesses, unlike other techniques, such as foot printing and scanning, 
it involves active connections to systems and directed queries (McClure, et al., 2009). 
It forms a key part of many security testing methodologies including the Open 
Source Security Testing Methodology Manual (OSSTMM) (Herzog, 2010) and the 
OWASP Testing Guide (OWASP Foundation, 2008). 

A large amount of information can be enumerated from a Windows based network 
including: domain controllers, services running on hosts, logged on users, installed 
software, shared resources, user groups, policies, user rights, and user information 
(McClure, et al., 2009). This information may appear harmless, however it lead to a 
complete compromise of the network and should therefore be eliminated from the 
network (McClure, et al., 2009). 

A number of services can be used to gather this information from a Windows 
domain: 

As the Microsoft Active Directory (AD) namespace is based on the Domain Name 
Service (DNS), services are advertised through DNS SRV records. It is therefore 
possible to identify servers running specific services by searching for the appropriate 
SRV record, for example domain controllers can be found by searching for the 
Kerberos Authentication service (_kerberos._tcp) (Scambray & McClure, 2008). 

The NetBIOS Name Service (NBNS), has now largely been replaced by DNS, but is still 
enabled by default on Windows domains. It can be queried to find workgroups, 
domains, domain controllers, network services, logged on users, MAC addresses and 
servers (McClure, et al., 2009). 

Services and the ports they are running on along with internal and virtual IP 
addresses can be found using the Microsoft RPC Endpoint Mapper Service (MSRPC), 
this information is not as detailed as that from NBNS but it has been known for this 
service to be available in situations where NBNS is not (Scambray & McClure, 2008). 

A NetBIOS session is a logical connection between any two processes on the network 
(Microsoft Corporation, 2010). A null session is an unauthenticated connection, also 
known as null session connection, anonymous logon and anonymous connection, 
over which it is possible to gather information about: network information, shares, 
users and groups and registry keys (Microsoft Corporation, 2006). It is considered 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton TOR Page 3 
 

the “biggest Achilles’ heel for Windows if not adequately protected” (McClure, et al., 
2009). 

The Simple Network Management Protocol (SNMP) agent service is not installed by 
default on Windows but it is commonly installed by organisations that manage their 
networks using this service (Scambray & McClure, 2008). This service uses READ and 
WRITE community strings, roughly equivalent to a password, for authentication, 
however there are several strings known to be in wide spread use; “public” is the 
industry standard READ string. By reading specific object identifiers (OID) from the 
LAN Manager Management Information Base (MIB) it is possible to gather 
information such as: running services, share names, share paths, comments on 
shares, usernames, and the primary domain name (Scambray & McClure, 2008). 

Another technology that can be used to enumerate information from the Windows 
Active Directory (AD) is an implementation of the Lightweight Directory Access 
Protocol (LDAP). By connecting to the AD server it is possible to browse the contents 
of the directory including all existing users and groups (Scambray & McClure, 2008).  

Tools which use these one or more of these methods to gather information include: 
nltest, nslookup, dumpsec, Netbios Auditing Tools (NAT), user2sid, sid2user, 
NBTEnum, enum4linux.pl, NetE, GetAct, nbtscan, mbenum, nbtspade, ldapenum, 
winfo, enumeration modules are also available in the Metasploit Framework.  

During their time in industry the author found that several of these tools were 
required to be used in succession to retrieve the required information and each 
requires some level of direction from the user. Some flaws were also encountered 
while using the existing tools, for example only retrieving the first 100 groups from 
the Active Directory and requiring sessions to be established before running the tool. 

The proposed application will be targeted at security professionals who need to 
discover what information can be enumerated from their own, or a client’s, system. 

There are several languages that are appropriate for developing a tool which uses 
these methods of enumeration to retrieve information including: C, C++, Java, Ruby, 
Perl, and Python. Each has advantages and disadvantages which should be 
examined, particular factors for selecting a development language include: the 
targeted platform, the elasticity of the language, the time to production, the 
performance and the support and community (Reghunadh & Jain, 2011). 

The Microsoft “Security Development Lifecycle (SDL) is a security assurance process 
that is focused on software development” (Microsoft Corporation, 2010). 
Implementing a number of security activities throughout the traditional software 
development life cycle instead of on an ad-hoc basis leads to greater security gains. 
There are 16 mandatory security activities that must be undertaken to comply with 
the Microsoft SDL process: 

1. Training Requirements 
2. Security Requirements 
3. Quality Gates/Bug Bars 
4. Security and Privacy Risk Assessment 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton TOR Page 4 
 

5. Design Requirements 
6. Attack Surface Reduction 
7. Threat Modelling 
8. Use Approved Tools 
9. Deprecate Unsafe Functions 
10. Static Analysis 
11. Dynamic Program Analysis 
12. Fuzz Testing 
13. Threat Model and Attack Surface Review 
14. Incident Response Plan 
15. Final Security Review 
16. Release/Archive 

Unified Modelling Language provides tolls for analysis, design and implementation of 
software based systems as well as for modelling business and similar processes 
(Object Management Group, 2012). Using the tools in the UML specification it is 
possible to model the properties and behaviour of a system and therefore ensure 
that all requirements of a product have been accounted for in the plan. 

Key challenges that must be overcome during this piece of work include: selection of 
appropriate information to store which will improve subsequent runs of the tool; 
and using the available technologies to effectively gather information which is 
required for other enumeration methods without user input. 

3. Proposed Work 

The author proposes to identify, through a literature review, the information that 
can be enumerated from a Windows domain. Possible development languages will 
also be considered along with the methods of gathering this information using 
common network services such as DNS, DHCP, SNMP and NetBIOS. Existing Windows 
enumeration products will be discussed in terms of the amount of information that 
they retrieve and the level of user input required before retrieving this information. 

Following Microsoft’s Security Development Lifecycle (MS SDL) (Microsoft 
Corporation, 2010) a product will then be designed using Unified Modelling 
Language (UML) (Object Management Group, 2012)diagrams, and implemented 
which uses the identified methods to gather the information from the Windows 
domain. The design should include a feedback and improvement mechanism that is 
persistent across multiple runs of the command line tool. 

Primarily the tool will be designed to require no user input and enumerate as much 
information as possible when run, however, for instances where autonomous 
running is insufficient, the application will also allow the user to direct enumeration. 
It should we written in an as an object oriented program with the functionality 
abstracted to allow future expansion and increase maintainability. It should output 
in a human readable and machine parsable form to maximise the usefulness of the 
results. 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton TOR Page 5 
 

A testing plan will be devised to assess the functional and non-functional aspects of 
the product, this will require the configuration of a virtual/lab Windows domain. The 
testing plan will then be conducted and the results analysed to evaluate the 
product’s level of functionality.  

Finally user documentation will be developed for the product which will describe 
how the product can be used and give examples of both input arguments and 
corresponding output. 

4. Aims of Project 

The aim of the project is to develop an enumeration tool that that discovers 
information from a Windows domain and stores information from each run which 
can be used to improve subsequent runs. 

5. Objectives 

In order to accomplish the aim of the project the following objectives have been 
devised. 

1. To perform a literature review encompassing existing tools, useful 
information that can be enumerated, methods of enumeration, and 
persistent storage solutions. [Tasks 1-8] 

2. Create a list of requirements for the tool based on the literature review. 
[Tasks 9-13] 

3. Enhance knowledge of the Windows API – online documentation [Tasks 14-
16] 

4. Enhance skills in the selected development language. – online tutorials 
[Tasks 17-20] 

5. Create design diagrams for structure and behaviour of the application. 
(object oriented, abstracted) [Tasks 21-25] 

6. Implement the designs in the chosen development language utilising a 
source code management solution (Git) and following the MS SDL. [Tasks 
26-31] 

7. Develop and carry out a plan to test the application against the 
requirements specification. [Tasks 32-37] 

8. Undertake an analysis of the results of the testing to identify functional and 
non-functional results. [Tasks 38-39] 

9. Generate user documentation for the application. [Tasks 40-43] 

6. Skills 

The successful completion of this project relies on a number of skills and areas of 
knowledge. Some of these are familiar to the authors but others must be attained as 
part of the project. 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton TOR Page 6 
 

Software programming and functional and non-functional testing skills have been 
obtained through “EN0273 – Programming in C”, “EN0572 – Operating Systems and 
Concurrency” and online tutorials in the selected development language. 

Additional software development skills in the area of design using Unified Modelling 
Language (UML) (Object Management Group, 2012) and the Microsoft Secure 
Development Lifecycle (MS SDL) (Microsoft Corporation, 2010) will be gained during 
the project by reading the materials recommended by the organisations website. 

Correct usage of a source code management solution will be an asset during the 
project. The author has gained some experience of using the source code 
management solution “Git” (Git, 2013) during their year in industry; these skills will 
be enhanced by studying the documentation available the projects website and “Pro 
Git” (Chacon, 2009).  

Knowledge of the information that is useful that should be enumerated during a 
penetration test was also gained during the year in industry. This knowledge will be 
supplemented with information from Hacking Exposed 6 Network Security Secrets 
and Solutions and other relevant texts. 

It is anticipated that a number of Windows domain controllers and servers will be 
required as a test bed to assess the function of the product. Therefore knowledge of 
installation and configuration of a Windows domain will be sought through online 
documentation at Microsoft Developers Network (MSDN) (Microsoft Corporation, 
2013). 

7. References 

Appcelerator Inc, 2013. PyDev. [Online] Available at: http://pydev.org/ [Accessed 14 
October 2013]. 

Chacon, S., 2009. Pro Git. 1st ed. s.l.:Apress. 

Git, 2013. Git. [Online] Available at: http://git-scm.com/ [Accessed 14 October 2013]. 

Herzog, P., 2010. The Opensource Security Testing Methodology Manual. 3rd ed. 
Cardedeu, Spain: ISECOM. 

McClure, S., Scambray, J. & Kurtz, G., 2009. Hacking Exposed Network Security 
Secrets & Solutions. 6th ed. United States: Mc Graw Hill. 

Microsoft Corporation, 2006. The effects of removing null sessions from the 
Microsfot Windows 2000 and Microsoft Windows NT environment. [Online] Available 
at: http://support.microsoft.com/kb/890161 [Accessed 14 October 2013]. 

Microsoft Corporation, 2010. NetBIOS Session (Windows). [Online] Available at: 
http://msdn.microsoft.com/en-us/library/bb870911(v=vs.85).aspx [Accessed 14 
October 2013]. 

http://pydev.org/
http://git-scm.com/
http://support.microsoft.com/kb/890161
http://msdn.microsoft.com/en-us/library/bb870911(v=vs.85).aspx


Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton TOR Page 7 
 

Microsoft Corporation, 2010. Simplified Implementation of the Microsoft SDL. 
[Online] Available at: http://go.microsoft.com/?linkid=9708425 [Accessed 14 
October 2013]. 

Microsoft Corporation, 2013. Microsfot DreamSpark. [Online] Available at: 
https://www.dreamspark.com/ [Accessed 14 October 2013]. 

Microsoft Corporation, 2013. Microsoft Developer Network. [Online] Available at: 
http://msdn.microsoft.com/en-uk [Accessed 14 October 2013]. 

Object Management Group, 2012. OMG Unified Modeling Language TM (OMG UML) 
Version 2.5 FTF – Beta 1. [Online] Available at: http://www.omg.org/spec/UML/2.5 
[Accessed 14 October 2013]. 

Oracle, 2013. Oracle VM VirtualBox. [Online] Available at: 
https://www.virtualbox.org/ [Accessed 14 October 2013]. 

OWASP Foundation, 2008. OWASP Testing Guide. 3rd ed. s.l.:OWASP. 

Python Software Foundation, 2013. Python Programming Language - Official 
Website. [Online] Available at: http://python.org/ [Accessed 14 October 2013]. 

Reghunadh, J. & Jain, N., 2011. Selecting the optimal programming language. 
[Online] Available at: http://www.ibm.com/developerworks/library/wa-optimal/ 
[Accessed 15 October 2013]. 

Scambray, J. & McClure, S., 2008. Hacking Windows Exposed. 3rd ed. United States: 
McGraw Hill. 

The Eclipse Foundation, 2013. EGit. [Online] Available at: 
http://www.eclipse.org/egit/ [Accessed 14 October 2013]. 

The Eclipse Foundation, 2013. The Eclipse Foundation Open Source Community 
Website. [Online] Available at: http://www.eclipse.org/ [Accessed 14 October 2013]. 

United States v. Microsoft - Review of the Final Judgements by the United Steates 
and New York Group (2007) 98-1232 (CKK).  

VMware Inc, 2013. VMware Workstation: Run Multiple OS, Linuix, Windows 8 & 
More; - UK. [Online] Available at: 
http://www.vmware.com/uk/products/workstation/ [Accessed 14 October 2013]. 

 

8. Resources – Statement of Hardware / Software Required 

Fulfilment of the proposed piece of work requires some standard computing 
equipment along with some more specialised software. 

The selected development language, Python 2.7.5 (Python Software Foundation, 
2013), is freely available for download from the project’s homepage. Any text editor 

http://go.microsoft.com/?linkid=9708425
https://www.dreamspark.com/
http://msdn.microsoft.com/en-uk
http://www.omg.org/spec/UML/2.5
https://www.virtualbox.org/
http://python.org/
http://www.ibm.com/developerworks/library/wa-optimal/
http://www.eclipse.org/egit/
http://www.eclipse.org/
http://www.vmware.com/uk/products/workstation/


Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton TOR Page 8 
 

can be used to develop with Python, however an Integrated Development 
Environments (IDEs) are designed to increase productivity incorporating an editor, 
debugger, and console. The author’s preferred IDE is Eclipse (The Eclipse Foundation, 
2013), which is freely available from the project homepage and offers extensions for 
Python (PyDev (Appcelerator Inc, 2013)) and source code management (EGit (The 
Eclipse Foundation, 2013)). 

Testing the product requires a functional Windows domain environment; to simulate 
real world situations multiple Windows server versions (2003, 2008 and 2012) and 
configurations will be required. This is licensed software that will be should be 
provided by the university, however if this is not possible, these operating systems 
are available through Microsoft DreamSpark (Microsoft Corporation, 2013) (formally 
Microsoft Developer Network Academic Alliance [MSDNAA]) to which the author has 
access. 

Virtual machine software will be an asset during the testing process as multiple 
installations and configurations can be deployed rapidly, it also reduces the amount 
of physical hardware required for the project. VMWare Workstation  is a suitable 
solution which supports “teams” of virtual machines (VMware Inc, 2013). It is 
anticipated that this software will be provided by the university, however if this is 
not the case then Oracle Virtual Box is a free virtual machine solution that could be 
used or multiple physical computers could be used (Oracle, 2013). 

One or more physical computers will be required dependant on the specification; 
either a single machine capable of running several Windows virtual machines 
concurrently along with the IDE, or multiple machines each capable or running of 
fulfilling a specific role. These machines should be provided by the university; 
however the author’s personal computer and laptop may be used as a contingency. 

9. Structure and Contents of the Project Report 

The following chapter are planned for the report. 

1. Introduction [Tasks 44] 

This chapter will cover the aims and objectives of the project and an overview 
of the product, its: purpose, scope, main features and characteristics. It will 
go on to discuss the problem context and reasons for undertaking the project 
and summarise the approach taken and tools used.  

2. Literature Review [Task 1-8] 

The literature review will cover the subject area in terms of enumeration as a 
step in a security assessment, information which can be enumerated from 
the Windows domain and the technologies that can be used to enumerate 
this information. This chapter will also cover the current tools that exist 
regarding what information is retrieved and how much user input is required 
to gather this information.  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton TOR Page 9 
 

3. Requirements Specification [Task 9-13] 

A discussion of the key aspects of the specification will be included focusing 
on the design decisions that came from the literature review.  

4. Analysis Models and Design Specifications [Task 21-25] 

Models produces from the requirement specification will be explained and 
justified. 

Interesting and important design decisions relating to the structure of the 
application, the use of particular design patterns, and interface designs will 
be discussed. 

5. Product Code [Task 26-31, 40-43] 

The implementation of the designs will be explained in detail with attention 
paid to enumeration functions and feedback and improvement has been 
implemented. 

6. Testing [Task 32-37] 

The testing plans devised for the product will be detailed and the reasons for 
each test justified. 

The testing strategy will also include a qualitative approach using qualified 
penetration testers from Sec-1 Ltd. 

The results of these tests will be documented and analysed resulting in a 
clear understanding of the state of the product that has been produced.  

7. Evaluation of the Product [Task 38-39] 

A critical evaluation of the product will be undertaken against the 
requirements specification. The results of the testing phase will be used along 
with a reflection on the design and implementation. 

8. Evaluation of the Project Process [Task 44] 

The project as a whole will be evaluated including aspects that would be 
conducted in a different manner if the project were to be repeated.  

9. Conclusions and Recommendations [Task 44] 

This section will define to what extent the project’s aims and objectives were 
met. Recommendations for further work will be stated including areas of 
improvement and further features that may be added. 

10. Appendices 

Terms of Reference 

Design Documents 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton TOR Page 10 
 

Product source code (Digital copy) 

User documentation 

10. Marking Scheme 

 Project Type 10.1.

The project type that has been selected for this project is “Software Engineering”. 

 Project Report 10.2.

The planned chapters of the report below address the indicated sections of the 
marking scheme. 

Marking Scheme Chapter Titles 

Introduction Introduction 

Analysis Literature Review 
Requirements Specification 

Synthesis Analysis Models and Design 
Specifications 
Product Code 
Testing 

Evaluation, Conclusions & 
Recommendations 

Evaluation of the Product 
Evaluation of the Project Process 
Conclusions and Recommendations 

 Product 10.3.

Several deliverables will make up the finished product at the end of the project. The 
most significant of these is the application developed to meet the project aim. Other 
deliverables include the requirements specification, design diagrams, testing plans, 
test results and user documentation. 

Fitness for purpose and build quality should be assessed against the following 
criteria: 

Fitness for Purpose 40% 

• Meeting of Requirements as identified during the project 
• Quality of Functionality 

Build Quality 60% 

• Requirements specification & analysis 
• Design specification 
• Code quality 
• Test plans and results 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton TOR Page 11 
 

11. Project Plan – Schedule of Activities 

Objective Details/Description of Activities

w
/c

 2
1/

10
/2

01
3

w
/c

 2
8/

10
/2

01
3

w
/c

 4
/1

1/
20

13

w
/c

 1
1/

11
/2

01
3

w
/c

 1
8/

11
/2

01
3

w
/c

 2
5/

11
/2

01
3

w
/c

 2
/1

2/
20

13

w
/c

 9
/1

2/
20

13

w
/c

 1
6/

12
/2

01
3

w
/c

 2
3/

12
/2

01
3

w
/c

 3
0/

12
/2

01
3

w
/c

 6
/1

/2
01

4

w
/c

 1
3/

1/
20

14

w
/c

 2
7/

1/
20

14

w
/c

 3
/2

/2
01

4

w
/c

 1
0/

2/
20

14

w
/c

 1
7/

2/
20

14

w
/c

 2
4/

2/
20

14

w
/c

 3
/3

/2
01

4

w
/c

 1
0/

3/
20

14

w
/c

 1
7/

3/
20

14

w
/c

 2
4/

3/
20

14

w
/c

 3
1/

3/
20

14

1.    Identify relevant information 

sources
2hrs

2.    Identify information to 

enumerate
2hrs

3.    Identify methods of 

enumeration
2hrs

4.    Identify existing tools 2hrs

5.    Identify potential 

development languages
2hrs

6.    Discuss subject sections

7.    Discuss existing tools

8.    Discuss development 

languages

9.    MS SDL Practice 2: Security 

Requirements
1hr

10.    MS SDL Practice 3: Quality 

Gates/Bug Bars
2hrs

11.    MS SDL Practice 4: Security 

and Privacy Risk Assessment
2hrs

12.    Functional requirements 2hrs

13.    Non-functional 

requirements
2hrs

14.       Identify API calls for 

required information
2hrs

15.       Identify the perquisite 

information the API calls require 

to operate

1hr

16.       Identify the authentication 

required to use the API calls
1hr

17.       Read appropriate sections 

of the development language 

documentation

2hrs

18.       Read sections of Learning 

Python 2nd Edition
3hrs

19.       Read the relevant 

programming style 

documentation for the 

development language

1hr

20.       Identify modules to 

enumerate the required 

information.

3hrs

21.       MS SDL Practice 5: Design 

Requirements
3hrs

22.       MS SDL Practice 6: Attack 

surface reduction
3hrs

23.       MS SDL Practice 7: Threat 

modelling
4hrs

24.       Read the UML specification 

and tutorials
5hrs

25.       Create design diagrams 

based on requirements 

specification.

10hrs

26.       Create Git repository
30mi

n

27.       Read the MS SDL 1hr

28.       Program the application 

based on the designs following 

the MS SDL

29.       MS SDL Practice 8: Use 

Approved Tools

30.       MS SDL Practice 9: 

Deprecate Unsafe Functions

31.       MS SDL Practice 10: Static 

Analysis
5hrs

32.       Devise tests to determine if 

functional requirements have 

been met. (MS SDL Practice 11: 

Dynamic Program Analysis)

2hrs

33.       Devise tests to determine if 

non-functional requirements 

have been met. (MS SDL Practice 

11: Dynamic Program Analysis)

2hrs

34.       Devise  tests to meet MS 

SDL Practice 12: Fuzz Testing
2hrs

35.       MS SDL Practice 13: Threat 

Model and Attack Surface 

Review

2hrs

36.       Create an appropriate test 

bed to carry out testing.
3hrs

37.       Conduct tests of the 

application within the test bed.
3hrs

38.       Compare test results to 

requirements
1hr

39.       Discuss the testing

40.       Specify application 

dependencies
1hr

41.       Specify steps required to 

create deployment environment
1hr

42.       Specify intended usage 

scenario
1hr

43.       Provide example user input 

and program output
1hr

8.        Undertake an analysis of 

the results of the testing to 

identify functional and non-

9.    Generate user 

documentation for the 

application.

10hrs

Report Writing 20hrs

7.        Develop and carry out a 

plan to test the application 

against the requirements 

specification.

60hrs

1.        To perform a literature 

review encompassing existing 

tools, useful information that 

can be enumerated, methods of 

enumeration, and persistent 

storage solutions.

2.        Create a list of 

requirements for the tool based 

on the literature review.

3.        Enhance knowledge of the 

Windows API – online 

documentation

4.        Enhance skills in the 

selected development 

language. – online tutorials

5.        Create design diagrams for 

structure and behaviour of the 

application. (object oriented, 

abstracted)

4hrs

4hrs

4hrs

Contingency

180hrs

1hr

1hr

6.        Implement the designs in 

the chosen development 

language utilising a source code 

management solution (git) and 

following the MS SDL.

 



 

Appendix B: Software Requirements Specification 

 
 
 
 
 

Software Requirements Specification 
 

Nettynum 

A Windows Domain Enumeration Tool 

 

Oliver Morton 

 

2013/2014 

 

Software Engineering Project 

 

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton SRS - Page 1 
 

Contents 

1 Introduction ................................................................................................................. 2 

1.1 Purpose.................................................................................................................. 2 

1.2 Scope ..................................................................................................................... 2 

1.2.1 Essential ......................................................................................................... 2 

1.2.2 Desirable ........................................................................................................ 2 

1.2.3 Excluded ......................................................................................................... 2 

1.3 Definitions, Acronyms, and Abbreviations ............................................................ 3 

1.3.1 Enumeration .................................................................................................. 3 

1.3.2 Domain ........................................................................................................... 3 

1.3.3 Active Directory (AD) ..................................................................................... 3 

1.3.4 Domain Name System (DNS) ......................................................................... 3 

1.3.5 Domain Controller.......................................................................................... 3 

1.4 References ............................................................................................................. 3 

2 Overall description ....................................................................................................... 4 

2.1 Product Perspective .............................................................................................. 4 

2.1.1 System Interfaces ........................................................................................... 4 

2.1.2 User interfaces / Operations .......................................................................... 4 

2.1.3 Hardware interfaces ...................................................................................... 4 

2.1.4 Software interfaces ........................................................................................ 4 

2.1.5 Communications interfaces ........................................................................... 5 

2.1.6 Memory .......................................................................................................... 5 

2.1.7 Site adaptation requirements ........................................................................ 5 

2.2 Product Functions ................................................................................................. 5 

2.3 User Characteristics ............................................................................................... 6 

2.4 Constraints ............................................................................................................ 6 

2.5 Assumptions and Dependencies ........................................................................... 6 

2.6 Apportioning of Requirements ............................................................................. 6 

 
 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton SRS - Page 2 
 

1 Introduction 

1.1 Purpose 

The purpose of this document is to describe the requirements specifications of 
Nettynum, a Windows domain enumeration tool. It explains the functional features, and 
design constraints. 

1.2 Scope 

Nettynum is intended to function in a Microsoft Windows Active Directory domain. The 
main objective is to enumerate information that can be used during a security 
assessment of an internal corporate network. 

1.2.1 Essential 

The following requirements must be met by the product. 

13) Run on a machine that is not a member of a domain 
14) Run on a Microsoft Windows machine 
15) Identify domain names on a local area network 
16) Identify domain controllers 
17) Retrieve a list of users from the active directory 
18) Retrieve a list of groups from the active directory 
19) Retrieve a list of group members from the active directory 
20) Retrieve user account information from the active directory 
21) Retrieve the domain accounts policy (Lockout: duration, threshold, observation 

window. Password: length, character set) 
22) Perform automated enumeration 
23) Output in a parseable and human readable format 
24) Provide a help / usage guide 

1.2.2 Desirable 

The following requirements maybe met by the product. 

10) Perform directed enumeration 
11) Identify services running on hosts 
12) Identify domain trusts 
13) Retrieve a list of users from a local host 
14) Retrieve a list of groups from a local host 
15) Retrieve a list of group members a local host  
16) Retrieve information user account information from a local host 
17) Retrieve the local accounts policy (Lockout: duration, threshold, observation 

window. Password: length, character set) 
18) Retrieve a list of shares from a local host 

1.2.3 Excluded 

The product will not have the following requirments. 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton SRS - Page 3 
 

5) Conduct password guessing / brute force attacks 
6) Include an interactive prompt 
7) Include a graphical user interface (GUI) 
8) Run on a linux based platform 

1.3 Definitions, Acronyms, and Abbreviations 

1.3.1 Enumeration 

Within computer security the process of enumeration is an information gathering 
technique that uses active connections to a system and directed queries to obtain 
information from previously identified services (Scambray & McClure, 2008). 

1.3.2 Domain 

Allen, et al., (2006) provides a definition of the Windows domain. The "domain" concept 
was introduced in Windows NT, providing a way to group resources based on 
administrative and security boundaries. In active directory a domain is made up of a 
hierarchical structure of containers and objects, a DNS domain name as a unique 
identifier, a security service, and policies that dictate how functionality is restricted for 
users or machines within the domain. 

1.3.3 Active Directory (AD) 

Allen, et al. (2006) describe Microsoft Active Directory (AD), it is built on top of Windows 
Server, it enables administrators to manage enterprise-wide information efficiently from 
a central repository. It contains information about users, groups, computers, printers, 
applications and services; and can limit access to this information. 

1.3.4 Domain Name System (DNS) 

The Domain Name System (DNS), specified by a Internet Engineering Task Force (IETF) 
standard, is distributed database that contains the mappings between DNS domain 
names and various types of data including IP addresses (Microsoft, 2013). It allows the IP 
address of a resource, which the machine requires, to be located using a user friendly 
name. 

1.3.5 Domain Controller 

A domain controller is a Windows Server running Active Directory, it stores directory 
data and manages user and domain interactions, including user logon processes, 
authentication, and directory searches (Allen, et al., 2006). 

1.4 References 

Allen, R., Lowe-Norris, A. G. & Richards, J., 2006. Active Directory. 3rd ed. s.l.:O'Reilly. 

Microsoft, 2013. Domain Name System (DNS) on Microsoft TechNet. [Online]  
Available at: http://technet.microsoft.com/en-US/network/bb629410.aspx 
[Accessed 5 November 2013]. 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton SRS - Page 4 
 

Scambray, J. & McClure, S., 2008. Hacking Windows Exposed. 3rd ed. United States: 
McGraw Hill. 

2 Overall description 

2.1 Product Perspective 

The system will stand alone on a host that is not joined to the Windows domain and be 
used to gather information from the Windows domain on the local area network on 
which it is deployed. 

The system will communicate with a variety of systems within the Windows domain 
including: the DNS server, domain controller and member servers. The DNS server will 
provide DNS records at the request of the system. The domain controller will 
authenticate the system, where necessary, and provide information from the active 
directory. 

The enumerated information will be returned to the user in a readable and parseable 
form. 

2.1.1 System Interfaces 

The system will utilise network services such as DNS and NetBIOS to enumerate 
information. This will be accomplished using the Windows API and the Python DNS 
library which in turn will use the machine’s physical network connection. 

In order to save the information that has been enumerated for later reference the file 
system will be utilise to store an XML file. 

2.1.2 User interfaces / Operations 

The product is a command line utility, and is therefore not interactive. When running the 
program the user must specify one or more command line arguments which dictate the 
behaviour of the application. 

One of these command line arguments specifies the level of logging messages that 
should be displayed to the user. 

The user should be able to specify ‘targeting’ parameters for the automated 
enumeration, e.g. the user can specify the domain name and domain controller that 
should be enumerated. 

2.1.3 Hardware interfaces 

The application requires network connectivity through either a wired or wireless 
network connection. 

2.1.4 Software interfaces 

This section identifies the libraries which will be used to interact with other software. 

Name: The Python for Windows Extensions 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton SRS - Page 5 
 

Mnemonic: PyWin23 

Version Number: 218.3 

Source: Active State Python http://www.activestate.com/activepython 

Purpose of Interfacing: Access to Windows API functions which will be used to perform 
enumeration of the Windows Active Directory. 

Definition of Interface: Interface is well documented at 
http://docs.activestate.com/activepython/2.7/ and http://msdn.microsoft.com/en-
us/library/windows/desktop/ff818516(v=vs.85).aspx 

 

Name: dnspython 

Version Number: 1.11.1 

Source: http://www.dnspython.org/ 

Purpose of Interfacing: Provides high and low level classes to perform DNS queries. 

Definition of Interface: Interface documentation is available at 
http://www.dnspython.org/docs/1.11.1/ 

 

2.1.5 Communications interfaces 

Communications are handled using the libraries specified above. Windows Active 
Directory Service Functions communicate using TCP/IP. DNS queries and responses use 
the User Datagram Protocol (UDP), unless the response data exceeds 512 bytes, in which 
case the Transmission Control Protocol (TCP) is used. 

2.1.6 Memory 

There are no constraints placed on the amount of memory the application can use. 

2.1.7 Site adaptation requirements 

The application is designed to be run on many different Windows domain based 
networks. It is intended to be installed on a machine that will be taken to each site 
during a security assessment. There are therefore no initialisation sequences that are 
site specific. 

2.2 Product Functions 

Automated enumeration: 

The application will determine the domain names on the network and their domain 
controllers. Using the specified credentials the application will connect to a domain 
controller. If the default null credentials are used the application will attempt to connect 
to each domain controller in turn until a session is established or there are no more 

http://www.activestate.com/activepython
http://docs.activestate.com/activepython/2.7/
http://msdn.microsoft.com/en-us/library/windows/desktop/ff818516(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ff818516(v=vs.85).aspx
http://www.dnspython.org/
http://www.dnspython.org/docs/1.11.1/


Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton SRS - Page 6 
 

domain controllers. Once a connection to a domain controller is established the 
application will retrieve the accounts policy, list of administrator groups, list of members 
of the administrator groups, administrator group members account information. 

The user can specify some or all of this information to ‘target’ the automated 
enumeration. 

Manual enumeration: 

The user can select, using command line options, a single category of information to 
enumerate. The categories are: 

1) Domain names on a local area network 
2) Domain controllers 
3) List of users from the active directory 
4) List of groups from the active directory 
5) List of group members from the active directory 
6) User account information from the active directory 
7) Domain accounts policy (lockout: duration, threshold, observation window. 

Password: length, character set) 

 

2.3 User Characteristics 

The intended user of this product is a computer security practitioner or windows domain 
administrator. It is therefore assumed that the user has a working knowledge of the 
Windows Active Directory structure and the information which it contains. 

As a computer security practitioner is often external to the organisation on which they 
are conducting an assessment, it is assumed that the user does not have any prior 
knowledge of the Windows domain on which the product will be used. 

2.4 Constraints 

There are no additional constraints which limit the developer’s options. 

2.5 Assumptions and Dependencies 

The application will be run on a Windows operating system newer than Windows 2000. 

The host has a network connection and valid IP address information (IP address, default 
gateway, default DNS server).  

The product is being run in a Windows Active Directory domain. 

2.6 Apportioning of Requirements 

The requirements specified in Section “3.1.2 Desirable” above may be delayed until a 

future version of the product.



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 1 
 

Appendix C: UML Designs 

1. Use Cases 

2.7 Enumerate domain names 

Use Case ID: UC1 

Use Case 
Name: 

Enumerate Domain Names  

Created By: Oliver Morton Last Updated By:  

Date Created: 3/12/2013 Last Revision Date:  

Actors: Manual Enumeration 
Automated Use Case 

Description: Gather domain names and report. 

Trigger:  

Preconditions: Network connection and IP addresses configured. 

Postconditions: Success guarantees: 
Discovered domain names reported in output file. 
Program exits. 

Normal Flow: 1. The user directs the system to enumerate 
domain names 

2. The system retrieves the domain names from 
the network 

3. The enumerated information is returned to the 
calling use case. 

Alternative Flows: 
[Alternative Flow 1 – 
Not in Network] 

 

Exceptions: If the system fails to find domain names it will display a 
message (Error Message Use Case) to the user and not 
create the file. 

Includes: Error Message Use Case 

Frequency of Use: Potentially every instance of product use. 

Special Requirements: No duplication of domain names. 

Assumptions: The application is being run in a Windows domain 
environment. 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 2 
 

Notes and Issues: User instructs the application to enumerate domain 
name through command line argument. 
NetBIOS and DNS domain names should be gathered. 
There is likely to be DNS domain name for each NetBIOS 
domain name, i.e two names for the same domain. If 
possible NetBIOS names should be mapped to DNS 
names and reported together. 
NetBIOS Domain names are legacy and may be 
removed from the Windows domain. DNS domain 
names should therefore take precedence over NetBIOS 
domain names. 

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 3 
 

2.8 Enumerate domain controller 

Use Case ID: UC2 

Use Case 
Name: 

Enumerate Domain Controllers 

Created By: Oliver Morton Last Updated By:  

Date Created: 9/12/2013 Last Revision Date:  

Actors: Manual Enumeration 
Automated Use Case 

Description: Gather domain controllers for each domain name and 
report. 

Trigger:  

Preconditions: Network connection and IP addresses configured. 
Domain Name Known 

Postconditions: Success guarantees: 
Discovered domain controllers reported in output file. 
Program exits. 

Normal Flow: 1. The user directs the system to enumerate domain 
controllers 

2. The system retrieves the domain controllers for 
the specified domain name from the network  

3. The enumerated information is returned to the 
calling use case. 

Alternative Flows: 
[Alternative Flow 1 – 
Not in Network] 

 

Exceptions: If the system fails to find domain controllers it will display 
a message (Error Message Use Case) to the. 

Includes: Error Message Use Case 

Frequency of Use: Potentially every instance of product use. 

Special Requirements: No duplication of domain controllers. 
Report IP address and fully qualified domain name 
(FQDN) 

Assumptions: The application is being run in a Windows domain 
environment. 

Notes and Issues: User instructs the application to enumerate domain 
controllers through command line argument. 
Fully qualified DNS domain names (FQDN) should be 
gathered along with IP address. If possible NetBIOS 
names should be mapped to DNS names and reported 
together. 
NetBIOS names are legacy and may be removed from the 
Windows domain. DNS domain names should therefore 
take precedence over NetBIOS domain names. 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 4 
 

2.9 Enumerate domain groups 

Use Case ID: UC3 

Use Case 
Name: 

Enumerate Domain Groups 

Created By: Oliver Morton Last Updated By:  

Date Created: 9/12/2013 Last Revision Date:  

Actors: Manual Enumeration 
Automated Use Case 

Description: Gather domain groups from the domain controller and 
report. 

Trigger:  

Preconditions: Network connection and IP addresses configured. 
Domain name and domain controller known. 

Postconditions: Success guarantees: 
Discovered domain groups reported in output file. 
Program exits. 

Normal Flow: 1. The user directs the system to enumerate 
domain groups 

2. The system authenticates to the domain 
controller (Authentication Use Case) 

3. The system retrieves the list of domain group 
names and group comment for the specified 
domain name from the domain controller. 

4. They system deauthenticates from the domain 
controller. (Deauthentication Use Case) 

5. The enumerated information is returned to the 
calling use case. 

Alternative Flows: 
[Alternative Flow 1 – 
Not in Network] 

 

Exceptions: 2. If system fails to authenticate to the domain 
controller it will display a message (Error Message Use 
Case) to the user and not create the file. 
3. If the system fails to find domain groups it will display 
a message (Error Message Use Case) to the user. 
4. If the system fails to deauthenticate from the domain 
controller an error message (Error Message Use Case) is 
displayed to the user and the normal flow continues. 

Includes: Error Message Use Case 

Frequency of Use: Potentially every instance of product use. 

Special Requirements: No duplication of domain groups. 

Assumptions: The application is being run in a Windows domain 
environment. 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 5 
 

Notes and Issues: User instructs the application to enumerate domain 
groups through command line argument, specifying the 
domain name and controller. 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 6 
 

2.10 Enumerate domain group members 

Use Case ID: UC4 

Use Case 
Name: 

Enumerate Domain Group Members 

Created By: Oliver Morton Last Updated By:  

Date Created: 9/12/2013 Last Revision Date:  

Actors: Manual Enumeration 
Automated Use Case 

Description: Gather a domain group’s members from the domain 
controller and report. 

Trigger:  

Preconditions: Network connection and IP addresses configured. 
Domain name, domain controller and domain group 
name is known. 

Postconditions: Success guarantees: 
Discovered list of members for a domain group 
reported in output file. 
Program exits. 

Normal Flow: 1. The user directs the system to enumerate a 
domain group’s members 

2. The system authenticates to the domain 
controller (Authentication Use Case) 

3. The system retrieves the list of the domain 
group’s members from the domain controller. 

4. They system deauthenticates from the domain 
controller. (Deauthentication Use Case) 

5. The enumerated information is returned to the 
calling use case. 

Alternative Flows: 
[Alternative Flow 1 – 
Not in Network] 

 

Exceptions: 2. If system fails to authenticate to the domain 
controller it will display a message (Error Message Use 
Case) to the user and not create the file. 
3. If the system fails to find the domain group’s 
members will display a message (Error Message Use 
Case) to the user. 
4. If the system fails to deauthenticate from the domain 
controller an error message (Error Message Use Case) is 
displayed to the user and the normal flow continues. 

Includes: Error Message Use Case 

Frequency of Use: Potentially every instance of product use. 

Special Requirements: No duplication of domain groups. 

Assumptions: The application is being run in a Windows domain 
environment. 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 7 
 

Notes and Issues: User instructs the application to enumerate the domain 
group’s members through command line argument and 
specifies the domain name, controller and group name. 

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 8 
 

2.11 Enumerate domain user information 

Use Case ID: UC5 

Use Case 
Name: 

Enumerate Domain User Information 

Created By: Oliver Morton Last Updated By:  

Date Created: 9/12/2013 Last Revision Date:  

Actors: Manual Enumeration 
Automated Use Case 

Description: Gather a domain user’s account information from the 
domain controller and report. 

Trigger:  

Preconditions: Network connection and IP addresses configured. 
Domain name, domain controller and username known. 

Postconditions: Success guarantees: 
Discovered user information reported in output file. 
Program exits. 

Normal Flow: 1. The user directs the system to enumerate 
domain user’s information 

2. The system authenticates to the domain 
controller (Authentication Use Case) 

3. The system retrieves user information from the 
domain controller. 

4. They system deauthenticates from the domain 
controller. (Deauthentication Use Case) 

5. The enumerated information is returned to the 
calling use case. 

Alternative Flows: 
[Alternative Flow 1 – 
Not in Network] 

 

Exceptions: 2. If system fails to authenticate to the domain 
controller it will display a message (Error Message Use 
Case) to the user and not create the file. 
3. If the system fails to find the domain user’s 
information it will display a message (Error Message 
Use Case) to the user. 
4. If the system fails to deauthenticate from the domain 
controller an error message (Error Message Use Case) is 
displayed to the user and the normal flow continues. 

Includes: Error Message Use Case 
 

Frequency of Use: Potentially every instance of product use. 

Special Requirements: No duplication of domain user information. 

Assumptions: The application is being run in a Windows domain 
environment. 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 9 
 

Notes and Issues: User instructs the application to enumerate the domain 
group’s members through command line argument and 
specifies the domain name, controller and group name. 

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 10 
 

2.12 Enumerate domain accounts policy 

Use Case ID: UC6 

Use Case 
Name: 

Enumerate Domain Accounts Policy 

Created By: Oliver Morton Last Updated By:  

Date Created: 9/12/2013 Last Revision Date:  

Actors: Manual Enumeration 
Automated Use Case 

Description: Gather a domain’s account policy (observation 
windows, lockout threshold, lockout duration, password 
complexity, password age, password history length, etc) 
from the domain controller and report. 

Trigger:  

Preconditions: Network connection and IP addresses configured. 
Domain name and domain controller known. 

Postconditions: Success guarantees: 
Discovered domain account policy reported in output 
file. 
Program exits. 

Normal Flow: 1. The user directs the system to enumerate 
domain account policy 

2. The system authenticates to the domain 
controller (Authentication Use Case) 

3. The system retrieves account policy from the 
domain controller. 

4. They system deauthenticates from the domain 
controller. (Deauthentication Use Case) 

5. The enumerated information is returned to the 
calling use case. 

Alternative Flows: 
[Alternative Flow 1 – 
Not in Network] 

 

Exceptions: 2. If system fails to authenticate to the domain 
controller it will display a message (Error Message Use 
Case) to the user and not create the file. 
3. If the system fails to find the domain account policy it 
will display a message (Error Message Use Case) to the 
user. 
4. If the system fails to deauthenticate from the domain 
controller an error message (Error Message Use Case) is 
displayed to the user and the normal flow continues. 

Includes: Error Message Use Case 

Frequency of Use: Potentially every instance of product use. 

Special Requirements: No duplication of domain user information. 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 11 
 

Assumptions: The application is being run in a Windows domain 
environment. 

Notes and Issues: User instructs the application to enumerate the domain 
account policy through command line argument and 
specifies the domain name and controller. 

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 12 
 

2.13 Enumerate domain trusts 

Use Case ID: UC7 

Use Case 
Name: 

Enumerate Domain Trusts 

Created By: Oliver Morton Last Updated By:  

Date Created: 9/12/2013 Last Revision Date:  

Actors: Manual Enumeration 
Automated Use Case 

Description: Gather the trusts between domains and report 

Trigger:  

Preconditions: Network connection and IP addresses configured. 
Domain name and a member server (or domain 
controller) are known. 

Postconditions: Success guarantees: 
Discovered domain trusts reported in output file. 
Program exits. 

Normal Flow: 1. The user directs the system to enumerate 
domain trusts 

2. The system authenticates to the specified server 
(Authentication Use Case) 

3. The system retrieves account policy from the 
domain controller. 

4. They system deauthenticates from the specified 
server. (Deauthentication Use Case) 

5. The enumerated information is returned to the 
calling use case. 

Alternative Flows: 
[Alternative Flow 1 – 
Not in Network] 

 

Exceptions: 2. If system fails to authenticate to the domain 
controller it will display a message (Error Message Use 
Case) to the user and not create the file. 
3. If the system fails to find the domain trusts it will 
display a message (Error Message Use Case) to the user. 
4. If the system fails to deauthenticate from the domain 
controller an error message (Error Message Use Case) is 
displayed to the user and the normal flow continues. 

Includes: Error Message Use Case 

Frequency of Use: Potentially every instance of product use. 

Special Requirements: No duplication of domain user information. 

Assumptions: The application is being run in a Windows domain 
environment. 

Notes and Issues: User instructs the application to enumerate the domain 
trusts through command line argument and specifies 
the domain name and a member server. 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 13 
 

2.14 Enumerate local groups 

Use Case ID: UC8 

Use Case 
Name: 

Enumerate Local Groups 

Created By: Oliver Morton Last Updated By:  

Date Created: 9/12/2013 Last Revision Date:  

Actors: Manual Enumeration 
Automated Use Case 

Description: Gather local groups from the specified host and report. 

Trigger:  

Preconditions: Network connection and IP addresses configured. 
FQDN or IP address of host is known. 

Postconditions: Success guarantees: 
Discovered local groups reported in output file. 
Program exits. 

Normal Flow: 6. The user directs the system to enumerate local 
groups 

7. The system authenticates to the specified host 
(Authentication Use Case) 

8. The system retrieves the list of local group 
names and group comment for the specified 
local name from the specified host. 

9. They system deauthenticates from the specified 
host. (Deauthentication Use Case) 

10. The enumerated information is returned to the 
calling use case. 

Alternative Flows: 
[Alternative Flow 1 – 
Not in Network] 

 

Exceptions: 2. If system fails to authenticate to the specified host it 
will display a message (Error Message Use Case) to the 
user and not create the file. 
3. If the system fails to find local groups it will display a 
message (Error Message Use Case) to the user. 
4. If the system fails to deauthenticate from the 
specified host an error message (Error Message Use 
Case) is displayed to the user and the normal flow 
continues. 

Includes: Error Message Use Case 

Frequency of Use: Potentially every instance of product use. 

Special Requirements: No duplication of local groups. 

Assumptions: The application is being run in a Windows domain 
environment. 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 14 
 

Notes and Issues: User instructs the application to enumerate local 
groups through command line argument, specifying the 
local name and controller. 

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 15 
 

2.15 Enumerate local group members 

Use Case ID: UC9 

Use Case 
Name: 

Manual Enumeration 
Automated Use Case 

Created By: Oliver Morton Last Updated By:  

Date Created: 9/12/2013 Last Revision Date:  

Actors: Manual Enumeration 
Automated Use Case 

Description: Gather a local group’s members from the specified host 
and report. 

Trigger:  

Preconditions: Network connection and IP addresses configured. 
FQDN or IP address of host the group name is known. 

Postconditions: Success guarantees: 
Discovered list of members for a local group reported in 
output file. 
Program exits. 

Normal Flow: 6. The user directs the system to enumerate a local 
group’s members 

7. The system authenticates to the specified host 
(Authentication Use Case) 

8. The system retrieves the list of the local group’s 
members from the specified host. 

9. They system deauthenticates from the specified 
host. (Deauthentication Use Case) 

10. The enumerated information is returned to the 
calling use case. 

Alternative Flows: 
[Alternative Flow 1 – 
Not in Network] 

 

Exceptions: 2. If system fails to authenticate to the specified host it 
will display a message (Error Message Use Case) to the 
user and not create the file. 
3. If the system fails to find the local group’s members 
will display a message (Error Message Use Case) to the 
user. 
4. If the system fails to deauthenticate from the 
specified host an error message (Error Message Use 
Case) is displayed to the user and the normal flow 
continues. 

Includes: Error Message Use Case 

Frequency of Use: Potentially every instance of product use. 

Special Requirements: No duplication of local groups. 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 16 
 

Assumptions: The application is being run in a Windows domain 
environment. 

Notes and Issues: User instructs the application to enumerate the local 
group’s members through command line argument and 
specifies the local name, controller and group name. 

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 17 
 

2.16 Enumerate local user information 

Use Case ID: UC10 

Use Case 
Name: 

Enumerate Local User Information 

Created By: Oliver Morton Last Updated By:  

Date Created: 9/12/2013 Last Revision Date:  

Actors: Manual Enumeration 
Automated Use Case 

Description: Gather a local user’s account information from the 
specified host and report. 

Trigger:  

Preconditions: Network connection and IP addresses configured. 
FQDN or IP address of host and username is known. 

Postconditions: Success guarantees: 
Discovered user information reported in output file. 
Program exits. 

Normal Flow: 6. The user directs the system to enumerate local 
user’s information 

7. The system authenticates to the specified host 
(Authentication Use Case) 

8. The system retrieves user information from the 
specified host. 

9. They system deauthenticates from the specified 
host. (Deauthentication Use Case) 

10. The enumerated information is returned to the 
calling use case. 

Alternative Flows: 
[Alternative Flow 1 – 
Not in Network] 

 

Exceptions: 2. If system fails to authenticate to the specified host it 
will display a message (Error Message Use Case) to the 
user and not create the file. 
3. If the system fails to find the local user’s information 
it will display a message (Error Message Use Case) to 
the user. 
4. If the system fails to deauthenticate from the 
specified host an error message (Error Message Use 
Case) is displayed to the user and the normal flow 
continues. 

Includes: Error Message Use Case 

Frequency of Use: Potentially every instance of product use. 

Special Requirements: No duplication of local user information. 

Assumptions: The application is being run in a Windows domain 
environment. 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 18 
 

Notes and Issues: User instructs the application to enumerate the local 
group’s members through command line argument and 
specifies the local name, controller and group name. 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 19 
 

2.17 Enumerate local accounts policy 

Use Case ID: UC11 

Use Case 
Name: 

Enumerate Local Accounts Policy 

Created By: Oliver Morton Last Updated By:  

Date Created: 9/12/2013 Last Revision Date:  

Actors: Manual Enumeration 
Automated Use Case 

Description: Gather a local’s account policy (observation windows, 
lockout threshold, lockout duration, password 
complexity, password age, password history length, etc) 
from the specified host and report. 

Trigger:  

Preconditions: Network connection and IP addresses configured. 
FQDN or IP address of host is known. 

Postconditions: Success guarantees: 
Discovered local account policy reported in output file. 
Program exits. 

Normal Flow: 6. The user directs the system to enumerate local 
account policy 

7. The system authenticates to the specified host 
(Authentication Use Case) 

8. The system retrieves account policy from the 
specified host. 

9. They system deauthenticates from the specified 
host. (Deauthentication Use Case) 

10. The enumerated information is returned to the 
calling use case. 

Alternative Flows: 
[Alternative Flow 1 – 
Not in Network] 

 

Exceptions: 2. If system fails to authenticate to the specified host it 
will display a message (Error Message Use Case) to the 
user and not create the file. 
3. If the system fails to find the local account policy it 
will display a message (Error Message Use Case) to the 
user and not creating the file. 
4. If the system fails to deauthenticate from the 
specified host an error message (Error Message Use 
Case) is displayed to the user and the normal flow 
continues. 

Includes: Error Message Use Case 

Frequency of Use: Potentially every instance of product use. 

Special Requirements: No duplication of local user information. 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 20 
 

Assumptions: The application is being run in a Windows domain 
environment. 

Notes and Issues: User instructs the application to enumerate the local 
account policy through command line argument and 
specifies the local name and controller. 

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 21 
 

2.18 Enumerate Hosts with Services 

Use Case ID: UC12 

Use Case 
Name: 

Enumerate Hosts with Services 

Created By: Oliver Morton Last Updated By:  

Date Created: 9/12/2013 Last Revision Date:  

Actors: Manual Enumeration 
Automated Use Case 

Description: Gather a list of hosts running interesting services (SQL 
server etc) and report. 

Trigger:  

Preconditions: Network connection and IP addresses configured. 

Postconditions: Success guarantees: 
Discovered hosts reported in output file. 
Program exits. 

Normal Flow: 1. The user directs the system to enumerate 
machines with ‘interesting’ services running. 

2. The system queries the DNS serer for a list of 
hosts running specific services. 

3. The enumerated information is returned to the 
calling use case. 

Alternative Flows: 
[Alternative Flow 1 – 
Not in Network] 

 

Exceptions: 2. If the system fails to find hosts it will display a 
message (Error Message Use Case) to the user. 
 

Includes:  

Frequency of Use: Potentially every instance of product use. 

Special Requirements: No duplication of local hosts per service. 

Assumptions: The application is being run in a Windows domain 
environment. 
Hosts are configured to advertise their services through 
DNS service (SRV) records. 

Notes and Issues: User instructs the application to enumerate hosts 
running ‘interesting’ services through command line 
argument. 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 22 
 

2.19 Automated Domain Enumeration 

Use Case ID: UC13 

Use Case 
Name: 

Automated Domain Enumeration 

Created By: Oliver Morton Last Updated By:  

Date Created: 9/12/2013 Last Revision Date:  

Actors: User 

Description: Conduct automated enumeration of the domain and 
report. 

Trigger:  

Preconditions: Network connection and IP addresses configured. 

Postconditions: Success guarantees: 
Discovered information reported in output file. 
Program exits. 

Normal Flow: 1. The user directs the system to perform 
automated enumeration of the domain. 

2. Domain Names are enumerated (Enumerate 
Domain Name Use Case) 

For each domain name: 

3. Domain controllers are enumerated (Enumerate 
Domain Controllers Use Case) 

4. Attempt to authenticate to each domain 
controller (Authentication Use Case) with 
default null credentials until authentication is 
successful or all possibilities have been 
attempted. 

5. A List of domain groups are enumerated 
(Enumerate Domain Groups Use Case) and each 
name is checked to determine if it contains the 
string ‘admin’ or if it is in the list of groups to 
enumerate. 

6. For each group a list of members is enumerated 
(Enumerate Domain Group Members Use Case) 

7. For each member the user’s account 
information is enumerated (Enumerate Domain 
User Information Use Case) 

8. Enumerate the domain accounts policy 
(Enumerate Domain Accounts Policy Use Case) 

9. Enumerate domain trusts (Enumerate Domain 
Trusts Use Case) 

 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 23 
 

10. Discover hosts running ‘interesting’ services 
(Enumerate Hosts with Services) 

11. The system creates a file with the enumerated 
information (Reporter Use Case). 

Alternative Flows: 
[Alternative Flow 1 – 
Not in Network] 

If the user specifies a domain name, step 2 is skipped. 

If the user specifies a domain controller, step 3 is 
skipped 

If user specifies credentials are being used step 4 is 
replaced with: 

Authenticate to a domain controller 
(Authentication Use Case). 

If the user specifies a domain group, step 5 is skipped. 
If new domain names are discovered in step 9 repeat 
the use case for each. 

Exceptions: At 3 if the system fails to discover domain names it will 
display a message (Error Message Use Case) to the user 
and skip to 10. 
If authentication fails at 4 display a message (Error 
Message Use Case) to the user and skip to 10. 
If any of 5-9 fail, skip to the next step. 
If all steps failed do not create an output file. 

Includes: Error Message Use Case 
Reporter Use Case 
Enumerate Domain Name Use Case 
Enumerate Domain Controllers Use Case 
Authentication Use Case 
Enumerate Domain Groups Use Case 
Enumerate Domain Group Members Use Case 
Enumerate Domain User Information Use Case 
Enumerate Domain Accounts Policy Use Case 
Enumerate Domain Trusts Use Case 
Enumerate Hosts with Services 

Frequency of Use: Potentially every instance of product use. 

Special Requirements:  

Assumptions: The application is being run in a Windows domain 
environment. 

Notes and Issues: User instructs the application to perform automated 
domain enumeration, and can specify some targeting 
options (i.e. supply domain name etc) through 
command line argument. 
Steps 7-10 cannot be specified by the user so cannot be 
skipped in this use case. 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 24 
 

2.20 Automated Enumeration of Host 

Use Case ID: UC14 

Use Case 
Name: 

Automated Enumeration of Host 
Automated Use Case 

Created By: Oliver Morton Last Updated By:  

Date Created: 9/12/2013 Last Revision Date:  

Actors: User 

Description: Conduct automated enumeration of a host and report. 

Trigger:  

Preconditions: Network connection and IP addresses configured. 

Postconditions: Success guarantees: 
Discovered information reported in output file. 
Program exits. 

Normal Flow: 1. The user directs the system to perform 
automated enumeration a local host. 

2. Hosts running ‘interesting’ services discovered 
(Enumerate Hosts with Services) 

For each host: 

3. Authenticate to the host (Authentication Use 
Case). 

4. A list of local groups are enumerated 
(Enumerate Local Groups Use Case) and each 
name is checked to determine if it contains the 
string ‘admin’ or if it is in the list of groups to 
enumerate. 

5. For each group a list of members is enumerated 
(Enumerate Local Group Members Use Case) 

6. For each member the user’s account 
information is enumerated (Enumerate Local 
User Information Use Case) 

7. Enumerate the local accounts policy (Enumerate 
Local Accounts Policy Use Case) 

8. Enumerate domain trusts (Enumerate Domain 
Trusts Use Case) 

9. The enumerated information is returned to the 
calling use case. 

Alternative Flows: 
[Alternative Flow 1 – 
Not in Network] 

If the user specifies host(s), skip step 2. 
If the use specifies a group name, step 4 is skipped. 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 25 
 

Exceptions: If no hosts are discovered in step 2, display and error 
message to the user, skip the remaining steps and do 
not create a file. 
If authentication fails in step 3, display an error 
message to the use and skip to the next host. 
If any of steps 4-8 fail, skip to the next step. 

Includes: Error Message Use Case 
Reporter Use Case 
Authentication Use Case 
Enumerate Local Groups Use Case 
Enumerate Local Group Members Use Case 
Enumerate Local User Information Use Case 
Enumerate Local Accounts Policy Use Case 
Enumerate Doman Trusts Use Case 
Enumerate Hosts with Services 

Frequency of Use: Potentially every instance of product use. 

Special Requirements: Do not enumerate the same host twice. 

Assumptions: The application is being run in a Windows domain 
environment. 
 

Notes and Issues: User instructs the application to perform automated 
host enumeration, and can specify some targeting 
options (i.e. supply host(s) to enumerate etc) through 
command line argument. 
Steps 6-8 cannot be specified by the user so cannot be 
skipped in this use case. 

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 26 
 

2.21 Manual Enumeration 

Use Case ID: UC15 

Use Case 
Name: 

User 

Created By: Oliver Morton Last Updated By:  

Date Created: 9/12/2013 Last Revision Date:  

Actors: User 

Description: Perform a single enumeration exercise based on user 
input 

Trigger:  

Preconditions: Network connection and IP addresses configured. 

Postconditions: Success guarantees: 
Discovered information reported in output file. 
Program exits. 

Normal Flow: 1. The user directs the system to perform one of 
several enumerations. 

2. The appropriate Use Case for the enumeration is 
called: 

 Enumerate Domain Name Use Case 

 Enumerate Domain Controllers Use Case 

 Enumerate Domain Groups Use Case 

 Enumerate Domain Group Members Use Case 

 Enumerate Domain User Information Use Case 

 Enumerate Domain Accounts Policy Use Case 

 Enumerate Local Controllers Use Case 

 Enumerate Local Groups Use Case 

 Enumerate Local Group Members Use Case 

 Enumerate Local User Information Use Case 

 Enumerate Local Accounts Policy Use Case 

 Enumerate Doman Trusts Use Case 

 Enumerate Hosts with Services 

 

3. The system creates a file with the enumerated 
information (Reporter Use Case). 

Alternative Flows: 
[Alternative Flow 1 – 
Not in Network] 

 

Exceptions: If insufficient user input I provided, display an error 
(Error Message Use Case). 
If the enumeration fails do not create an output file. 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 27 
 

Includes: Error Message Use Case 
Reporter Use Case 
Enumerate Local Groups Use Case 
Enumerate Local Group Members Use Case 
Enumerate Local User Information Use Case 
Enumerate Local Accounts Policy Use Case 
Enumerate Doman Trusts Use Case 
Enumerate Hosts with Services 

Frequency of Use: Potentially every instance of product use. 

Special Requirements: User must specify pre requisite input for the 
enumeration. 

Assumptions: The application is being run in a Windows domain 
environment. 

Notes and Issues: User instructs the application to perform a specific 
enumeration activity, and specifies the perquisite 
information (e.g. supply host(s) to enumerate) through 
command line argument. 

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 28 
 

2.22 Reporter 

Use Case ID: UC16 

Use Case 
Name: 

Reporter 

Created By: Oliver Morton Last Updated By:  

Date Created: 9/12/2013 Last Revision Date:  

Actors: Manual Enumeration 
Automated Use Case 

Description: Output results of enumeration to file 

Trigger:  

Preconditions: Enumeration complete. 

Postconditions: Success guarantees: 
If results exist they have been written to a file. 
Program exits. 

Normal Flow: 1. Reporter is called and passed information to 
write to file. 

2. XML structure is created containing the 
information. 

3. XML structure is written to a file in a human 
readable form. 

 

Alternative Flows: 
[Alternative Flow 1 – 
Not in Network] 

 

Exceptions: If reporter is not passed any information to enumerate 
an error will be returned to the user (Error Message Use 
Case). 

Includes: Error Message Use Case 

Frequency of Use: Potentially every instance of product use. 

Special Requirements:  

Assumptions: Sufficient space on hard disk for output file. 

Notes and Issues:  

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 29 
 

2.23 Authentication 

Use Case ID: UC17 

Use Case 
Name: 

Authentication 

Created By: Oliver Morton Last Updated By:  

Date Created: 9/12/2013 Last Revision Date:  

Actors: Manual Enumeration 
Automated Use Case 
Enumerate Domain Name Use Case 
Enumerate Domain Controllers Use Case 
Enumerate Domain Groups Use Case 
Enumerate Domain Group Members Use Case 
Enumerate Domain User Information Use Case 
Enumerate Domain Accounts Policy Use Case 
Enumerate Local Groups Use Case 
Enumerate Local Group Members Use Case 
Enumerate Local User Information Use Case 
Enumerate Local Accounts Policy Use Case 
Enumerate Doman Trusts Use Case 
Enumerate Hosts with Services 

Description: Authenticate to specified host 

Trigger:  

Preconditions: Network connection and IP addresses configured. 
Host to authenticate to and credentials are known. 

Postconditions: Success guarantees: 
Session established with specified host. 
Program exits. 

Normal Flow: 1. Check if already authenticated to the host. 
2. If not authenticated, authenticate to host with 

given credentials 

 

Alternative Flows: 
[Alternative Flow 1 – 
Not in Network] 

If already authenticated to host, do nothing. 

Exceptions: If there is an error authenticating to the host, output an 
error message to the user (Error Message Use Case) 

Includes: Error Message Use Case 

Frequency of Use: Potentially every instance of product use. 

Special Requirements:  

Assumptions:  

Notes and Issues:  

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 30 
 

2.24 Deauthentication 

Use Case ID: UC18 

Use Case 
Name: 

Deauthentication 

Created By: Oliver Morton Last Updated By:  

Date Created: 9/12/2013 Last Revision Date:  

Actors: Manual Enumeration 
Automated Use Case 
Enumerate Domain Name Use Case 
Enumerate Domain Controllers Use Case 
Enumerate Domain Groups Use Case 
Enumerate Domain Group Members Use Case 
Enumerate Domain User Information Use Case 
Enumerate Domain Accounts Policy Use Case 
Enumerate Local Groups Use Case 
Enumerate Local Group Members Use Case 
Enumerate Local User Information Use Case 
Enumerate Local Accounts Policy Use Case 
Enumerate Doman Trusts Use Case 
Enumerate Hosts with Services 

Description: deauthenticate from specified host 

Trigger:  

Preconditions: Network connection and IP addresses configured. 
Host known. 
Host authenticated to. 

Postconditions: Success guarantees: 
Session terminated with specified host. 
Program exits. 

Normal Flow: 1. Check if already authenticated to the host. 
2. If authenticated, deauthenticate from host 

 

Alternative Flows: 
[Alternative Flow 1 – 
Not in Network] 

If already deauthenticated to host, do nothing. 

Exceptions: If there is an error deauthenticating to the host, output 
an error message to the user (Error Message Use Case) 

Includes: Error Message Use Case 

Frequency of Use: Potentially every instance of product use. 

Special Requirements:  

Assumptions:  

Notes and Issues:  

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 31 
 

2.25 Error Message 

Use Case ID: UC18 

Use Case 
Name: 

Error Message 

Created By: Oliver Morton Last Updated By:  

Date Created: 9/12/2013 Last Revision Date:  

Actors: Manual Enumeration 
Automated Use Case 
Enumerate Domain Name Use Case 
Enumerate Domain Controllers Use Case 
Enumerate Domain Groups Use Case 
Enumerate Domain Group Members Use Case 
Enumerate Domain User Information Use Case 
Enumerate Domain Accounts Policy Use Case 
Enumerate Local Groups Use Case 
Enumerate Local Group Members Use Case 
Enumerate Local User Information Use Case 
Enumerate Local Accounts Policy Use Case 
Enumerate Doman Trusts Use Case 
Enumerate Hosts with Services 

Description: Print error message to user 

Trigger:  

Preconditions: Message known. 

Postconditions: Success guarantees: 
Message written to terminal. 
Program exits. 

Normal Flow: 1. Write message to terminal. 

 

Alternative Flows: 
[Alternative Flow 1 – 
Not in Network] 

 

Exceptions:  

Includes:  

Frequency of Use: Potentially every instance of product use. 

Special Requirements:  

Assumptions:  

Notes and Issues:  

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 32 
 

2. Use Case Diagrams 

2.26 Automated Domain Enumeration 

User

Automated Domain
Enumeration

Enumerate Domain
Names

Enumerate Domain
Controllers

Enumerate Domain
Groups

Enumerate Domain
Group Members

Enumerate Domain
Account Information

Enumerate Domain
Users

Enumerate Domain
Policies

Enumerate Domain
Trusts

Authentication

Deauthentication

Reporter

-End1

*

-End2

*

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»«uses»

«uses»

System

 

2.27 Automated Local Enumeration 

Enumerate Local
Hosts with Services

Enumerate Local
Groups

Enumerate Local
Group Members

Enumerate Local
Users

Enumerate Local
Policies

Enumerate Local User
Account Information

User

Reporter

Automated Host
Enumeration

Authentication

Deauthentication

«uses»

«uses»

«uses»

«uses» «uses»

«uses»

«uses»

«uses»

«uses»
-End5

*

-End6

*

System

Enumerate Local
Shares

«uses»

 

2.28 Manual Enumeration 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 33 
 

System

User

Manual Enumeration

Authentication

Deauthentication

Enumerate Domain
Account Information

Enumerate Domain
Controllers

Enumerate Domain
Groups

Enumerate Domain
Names

Enumerate Domain
Policies

Enumerate Domain
Trusts

Enumerate Domain
Users

Enumerate Local
Group Members

Enumerate Domain
Group Members

Enumerate Local
Groups

Enumerate Local
Hosts with Services

Enumerate Local
PoliciesEnumerate Local User

Account Information

Enumerate Local
Users

Reporter«uses»

«uses»
«uses»

«uses» «uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»«uses»

«uses»

«uses»

«uses»

«uses»

-End3

*

-End4

*

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 34 
 

3. Class Diagrams 

2.29 Authenticators 

+get_host() : <unspecified>
+authenticate() : <unspecified>
+deauthenticate()
+_set_allow_deauth() : <unspecified>
+_get_allow_deauth()

-log
-_allow_deauth : <unspecified> = True
-_host : <unspecified> = "127.0.0.1"

BaseAuthenticator

+get_useraname() : <unspecified>
+get_passwd() : <unspecified>
+get_domain() : <unspecified>
+get_target() : <unspecified>
+get_share() : <unspecified>
+_already_authenticated() : <unspecified>
+deauthenticate() : <unspecified>
+authenticate() : <unspecified>

-_username : <unspecified> = ""
-_passwd : <unspecified> = ""
-_domain : <unspecified> = ""
-_share : <unspecified> = "IPC$"
-_target

SMBAuthenticator

+authenticate() : <unspecified>

-_community_string : <unspecified> = None

SNMPAuthenticator

+get_community_string()
+create_sessions()
+destroy_sessions()
+authenticate()
+deauthenticate()

-_host
-_authenticators
-_authenticated
-_username
-_domain
-_passwd
-_community_string

AuthenticationController

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 35 
 

2.30 Automation 

+_get_group_name_regex() : <unspecified>
+_create_reporter()
+get_data() : <unspecified>
+generate_report()

-log
-_data : <unspecified> = []
-_auth_domain : <unspecified> = ""
-_auth_username : <unspecified> = ""
-_auth_passwd : <unspecified> = ""
-_auth_community : <unspecified> = ""
-_regex : <unspecified> = []

BaseAutomation

+_create_reporter()
+_set_domain_name()
+enumerate()

-_group

DomainAutomation

+_create_reporter()
+_set_host()
+_set_domain_name()
+get_domain_names() : <unspecified>
+enumerate()

-_domain_names
-_group

LocalAutomation

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 36 
 

2.31 Manual 

+_get_domain_name() : <unspecified>
+_get_group_name() : <unspecified>
+_get_username() : <unspecified>
+_get_auth() : <unspecified>
+get_data() : <unspecified>
+_create_reporter()
+generate_report()

-log
-_auth_domain
-_auth_username
-_auth_passwd
-_auth_community
-_group_name
-_username

BaseManual

+get_group_name() : <unspecified>
+set_group_name()
+get_username() : <unspecified>
+set_username()
+_set_domain_name()
+_get_domain_controller() : <unspecified>
+_create_reporter()
+enumerate_domain_names()
+enumerate_domain_controllers()
+enumerate_domain_policies()
+enumerate_domain_groups()
+enumerate_domain_group_members()
+enumerate_users()
+enumerate_user_info()
+enumerate_group_membership()

-_domain_name : <unspecified> = None
-_domain_controller : <unspecified> = None
-_auth : AuthenticationController = None

DomainManual

+get_group_name() : <unspecified>
+set_group_name()
+get_username() : <unspecified>
+set_username()
+_set_host()
+_create_reporter()
+enumerate_interesting_hosts()
+enumerate_local_policies()
+enumerate_local_group_members()
+enumerate_local_groups()
+enumerate_users()
+enumerate_user_info()
+enumerate_group_membership()

-_domain_name : <unspecified> = None
-_host : <unspecified> = None
-_auth : AuthenticationController = None

LocalManual

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 37 
 

2.32 Data 

+set_domain_name()
+get_domain_name() : <unspecified>
+set_domain_controller()
+get_domain_controller() : <unspecified>
+set_group()
+get_groups() : <unspecified>
+set_policy()
+get_policy() : <unspecified>
+set_user()
+get_users() : <unspecified>

-log
-_domain_controllers : <unspecified> = []
-_groups : <unspecified> = []
-_users : <unspecified> = []
-_policies : <unspecified> = {}
-_domain_name : <unspecified> = ""

Domain

+set_group_name()
+get_group_name() : <unspecified>
+set_group_comment()
+get_group_comment() : <unspecified>
+set_member()
+get_members() : <unspecified>

-log
-_group_name : <unspecified> = ""
-_group_comment : <unspecified> = ""
-_members : <unspecified> = []

Group

+get_name() : <unspecified>
+set_group()
+get_groups() : <unspecified>
+set_policy()
+get_policy() : <unspecified>
+set_service()
+get_services() : <unspecified>
+set_user()
+get_users() : <unspecified>
+get_shares()
+set_share()

-log
-_name : <unspecified> = ""
-_services : <unspecified> = []
-_groups : <unspecified> = []
-_users : <unspecified> = []
-_policies : <unspecified> = {}
-_shares

Host

+get_user_dict()
+set_comment()
+set_workstations()
+set_country_code()
+set_last_logon()
+set_password_expired()
+set_full_name()
+set_params()
+set_code_page()
+set_priv()
+set_auth_flags()
+set_logon_server()
+set_home_dir()
+set_home_dir_drive()
+set_usr_comment()
+set_profile()
+set_acct_expires()
+set_primary_group_id()
+set_bad_pw_count()
+set_user_id()
+set_logon_hours()
+set_password()
+set_units_per_week()
+set_last_logoff()
+set_name()
+set_max_storage()
+set_num_logons()
+set_password_age()
+set_flags()
+set_script_path()
+set_group()
+get_comment()
+get_workstations()
+get_country_code()
+get_last_logon()
+get_password_expires()
+get_full_name()
+get_params()
+get_code_page()
+get_priv()
+get_auth_flags()
+get_logon_server()
+get_home_dir()
+get_home_dir_drive()
+get_usr_comment()
+get_profile()
+get_acct_expires()
+get_primary_group_id()
+get_bad_pw_count()
+get_user_id()
+get_logon_hours()
+get_password()
+get_units_per_week()
+get_last_logoff()
+get_name()
+get_max_storage()
+get_num_logons()
+get_password_age()
+get_flags()
+get_script_ath()
+get_groups()

-log
-_comment
-_workstations
-_country_code
-_last_logon
-_password_expired
-_full_name
-_parms
-_code_page
-_priv
-_auth_flags
-_logon_server
-_home_dir
-_home_dir_drive
-_usr_comment
-_profile
-_acct_expires
-_primary_group_id
-_bad_pw_count
-_user_id
-_logon_hours
-_password
-_units_per_week
-_last_logoff
-_name
-_max_storage
-_num_logons
-_password_age
-_flags
-_script_path
-_groups

User

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 38 
 

2.33 Enumerators 

+enumerate()

-log
-_auth : AuthenticationController = None

BaseEnumerator

+get_domain_names() : <unspecified>
+_set_domain_name()

-_domain_names : <unspecified> = []

DomainNameEnumerator

+enumerate()

FromFQDN

+enumerate()

FromObject

+enumerate()

FromDNSServFQDN

+enumerate()

DomainNameEnumerationController

+get_domain_name() : <unspecified>
+set_domain_name()
+get_domain_controllers() : <unspecified>
+_set_domain_controller()

-_doman_controllers : <unspecified> = []
-_domain_name

DomainControllerEnumerator

+_lookup_a()
+_lookup_srv()
+enumerate()

DNSLookup

+enumerate()

NetGetDC

+enumerate()

DsGetDCName

+enumerate()

-_kwargs

DomainControllerEnumerationController

+get_host() : <unspecified>
+set_host()
+get_groups() : <unspecified>
+_set_group()

-_groups : <unspecified> = []
-_host : <unspecified> = ""

GroupEnumerator

+enumerate()

NetGroupEnum

+enumerate()

NetLocalGroupEnum

+enumerate()

-_kwargs

GroupEnumerationController

+enumerate()

-_kwargs

LocalGroupEnumerationController

+get_host() : <unspecified>
+set_host()
+get_group() : <unspecified>
+set_group()
+get_members() : <unspecified>
+_set_member()

-_members : <unspecified> = []
-_host : <unspecified> = ""
-_group : <unspecified> = ""

GroupMemberEnumerator

+enumerate()

NetGroupGetUsers

+enumerate()

-_kwargs

GroupMemberEnumerationController

+enumerate()

NetLocalGroupGetMembers

+enumerate()

-_kwargs

LocalGroupMemberEnumerationController

+get_host()
+set_host()
+get_shares()
+set_share()

-_host
-_shares
-_auth

ShareEnumerator

+enumerate()

NetShareEnum

+enumerate()

-_kwargs

ShareEnumerationController

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 39 
 

+enumerate()

-log
-_auth : AuthenticationController = None

BaseEnumerator

+get_host() : <unspecified>
+set_host()
+get_info() : <unspecified>
+_assign_info()
+_set_info()

-_host : <unspecified> = ""

BaseUserEnumerator

+_assign_info()

-_info : <unspecified> = []
-_host : <unspecified> = ""

UserEnumerator

+enumerate()

NetUserEnum

+enumerate()

SNMPUserEnum

+enumerate()

-_kwargs

UserEnumerationController

+get_host() : <unspecified>
+set_host()
+get_user() : <unspecified>
+set_user()

-_info : <unspecified> = {}
-_host : <unspecified> = ""
-_user : <unspecified> = ""

UserInfoEnumerator

+enumerate()

NetUserGetInfo

+enumerate()

-_kwargs

UserInfoEnumerationController

+get_host() : <unspecified>
+set_host()
+get_user() : <unspecified>
+set_user()
+_set_group()
+get_groups() : <unspecified>

-_groups : <unspecified> = []
-_host : <unspecified> = ""

GroupMembershipEnumerator

+enumerate()

NetUserGetGroups

+enumerate()

NetUserGetLocalGroups

+enumerate()

-_kwargs

GroupMembershipEnumerationController

+enumerate()

-_kwargs

LocalGroupMembershipEnumerationController

+get_host() : <unspecified>
+set_host()
+get_policy() : <unspecified>
+_set_policy()

-_host : <unspecified> = ""
-_policy : <unspecified> = {}

PolicyEnumerator

+_enumerate_complexity()
+_enumerate_password()
+enumerate()

PasswordPolicy

+enumerate()

LockoutPolicy

+enumerate()

-_kwargs

PolicyEnumerationController

+get_hosts() : <unspecified>
+_set_host()

-_hosts : <unspecified> = []

InterestingHostEnumerator

+get_domain() : <unspecified>
+set_domain()
+get_valid_types() : AuthenticationController
+_convert_type()
+find_hosts()
+enumerate()

-_valid_types
-_domain_name

FromNetServerEnum

+get_services() : <unspecified>
+set_services()
+get_domain_name() : <unspecified>
+set_domain_name()
+lookup()
+zone_transfer()
+enumerate()

-_services
-_domain_name : <unspecified> = ""

FromDNSRecords

+enumerate()

-_kwargs

InterestingHostEnumerationController

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 40 
 

2.34 Reporters 

+generate()

-log
-_data : <unspecified> = None
-_filename : <unspecified> = None

BaseReporter

+_escape_text()
+_get_data()
+_to_rough_xml()
+_subelement_with_text()
+_policies_subelement()
+_group_subelement()
+_user_subelement()
+_add_pi()
+_to_pretty_xml()
+_write_file()
+generate()
+_shares_subelement()

BaseXMLReporter

+_add_pi()
+_to_rough_xml()

-_data

DomainXMLReporter

+_add_pi()
+_to_rough_xml()

-_data

LocalXMLReporter

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 41 
 

2.35 Nettynum 

+_automated_domain_enumeration()
+_automated_local_enumeration()
+_domain_names_enumeration()
+_domain_controllers_enumeration()
+_domain_policies_enumeration()
+_domain_groups_enumeration()
+_domain_group_members_enumeration()
+_domain_users_enumeration()
+_domain_user_enumeration()
+_domain_group_membership_enumeration()
+_interesting_hosts_enumeration()
+_local_policies_enumeration()
+_local_groups_enumeration()
+_local_group_members_enumeration()
+_local_users_enumeration()
+_local_user_enumeratoin()
+_local_group_membership_enumeration()
+_local_share_enumeration()
+run()

-automated_domain : <unspecified> = False
-automated_local : <unspecified> = False
-enumerate_domain_names : <unspecified> = False
-enumerate_domain_controllers : <unspecified> = False
-enumerate_domain_policies : <unspecified> = False
-enumerate_domain_groups : <unspecified> = False
-enumerate_domain_group_members : <unspecified> = False
-enumerate_domain_users : <unspecified> = False
-enumerated_domain_user : <unspecified> = False
-enumerate_domaoin_group_membership : <unspecified> = False
-enumerate_interesting_hosts : <unspecified> = False
-enumerate_local_policies : <unspecified> = False
-enumeated_local_groups : <unspecified> = False
-enumerate_local_group_members : <unspecified> = False
-enumerate_local_users : <unspecified> = False
-enumerate_local_user : <unspecified> = False
-enumerate_local_group_membership : <unspecified> = False
-enumerate_local_shares
-domain_name : <unspecified> = None
-domain_controller : <unspecified> = None
-host : <unspecified> = None
-group_name : <unspecified> = None
-user_name : <unspecified> = None
-domain : <unspecified> = None
-user : <unspecified> = None
-passwd : <unspecified> = None
-community : <unspecified> = None
-output_file : <unspecified> = None

Nettynum

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 42 
 

3 Sequence Diagrams 

3.1 AuthenticationController 

AuthenticationController Authenticator

Top Package::Actor

create_sessions()

authenticate(type)

True

{OR}

authenticated.append()

False

authenticate()

{OR}

True

False

destroy_sessions()

deauthenticate()

deauthenticate()

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 43 
 

3.2 DomainControllerEnumeration 

Top Package::Actor

DNSLookup

enumerate()

_lookup_a()

dnspython

dns.resolver.query()

response

_lookup_srv()

dns.resolver.query()

response

get_domain_controllers()

domain controllers

Top Package::Actor

NetGetDC pywin32

enumerate()

win32net.NetGetDCName()

domain controller

get_domain_controllers()

domain controllers

Top Package::Actor

DSGetDCName pywin32

enumerate()

win32security.DsGetDcName()

domain controller

get_domain_controllers()

domain controllers

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 44 
 

3.3 DomainNameEnumeration 

Top Package::Actor

FromFQDN

enumerate()

socket

getfqdn()

fqdn

domain name

Top Package::Actor

FromObject pywin32

enumerate()

win32com.client.GetObject()

domain names

domain names

get_domain_names()

get_domain_names()

Top Package::Actor

FromDNSServFQDN pythondns

enumerate()

dns.reversename.from_address().to_text()

fqdn

get_domain_name()

domain name

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 45 
 

3.4 GroupEnumeration 

Top Package::Actor

NetGroupEnum pywin32

enumerate()

win32net.NetGroupEnum()

groups

get_groups()

groups

Top Package::Actor

NetLocalGropuEnum pwin32

enumerate()

win32net.NetLocalGroupEnum()

groups

get_groups()

groups

Authenticator

authenticate("smb")

{OR}

deauthenticate()

Authenticator

authenticate("smb")

{OR}

deauthenticate()

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 46 
 

3.5 GroupMembersEnumeration 

Top Package::Actor

NetGroupGetMembers pywin32

enumerate()

win32net.NetGroupGetMembers()

groups

get_groups()

groups

Top Package::Actor

NetLocalGroupGetMembers pywin32

enumerate()

win32net.NetLocalGroupGetMembers()

groups

get_groups()

groups

Authenticat

{OR}

authenticate("smb")

deauthenticate()

Authenticator

{OR}

authenticate("smb")

deauthenticate()

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 47 
 

3.6 GroupMembershipEnumeration 

Top Package::Actor

NetUsetGetGroups pywin32 Authenticator

enumerate()

authenticate()

{OR}

win32net.NetUserGetGroups()

groups

deauthenticate()

get_groups()

groups

NetUsetGetLocalGroups pywin32 Authenticator

enumerate()

authenticate()

{OR}

win32net.NetUserGetLocalGroups()

groups

deauthenticate()

get_groups()

groups

Top Package::Actor

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 48 
 

3.7 InterestingHostEnumeration 

Top Package::Actor

FromNetServerEnum pywin32

enumerate()

find_hosts()

win32net.NetServerEnum()

hosts

get_hosts()

hosts

Top Package::Actor

FromDNSRecords dnspython

enumerate()

lookup

dns.resolver.query()

response

get_hosts()

hosts

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 49 
 

3.8 LockoutPolicyEnumeration 

Top Package::Actor

LockoutPolicy pywin32 Authenticator

enumerate()

authenticate("smb")

{OR}

win32net.NetUserModalsGet()

policy

deauthenticate()

get_policy()

policy

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 50 
 

3.9 DomainReporter 

Top Package::Actor

DomainReporter Domain

generate()

get_domain_name()

domain name

get_domain_controllers()

domain controllers

get_policy()

policy

get_groups()

groups

get_users()

users

Group User

group.get_group_name()

group name

group.get_group_comment()

group comment

group.get_members()

members

get_name()

name

get_comment()

comment

get_country_code()

country code

get_last_logon()

last logon

get_password_expired()

password expired

get_fulll_name()

full name

get_code_page()

code page

get_priv()

priv

get_auth_flags()

auth flags

get_logon_server()

logon server

get_home_dir()

home dir

get_home_dir_drive()

home dir drive

get_usr_comment()

usr comment

get_profile()

profile

get_acct_expires()

acct expires

get_primary_group_id()

primary group id

get_bad_pw_count()

bad pw count

get_user_id()

user id

get_password()

password

get_units per week()

units per week

get_last_logoff()

last logoff

get_max_storage()

max storage

get_num_logons()

num logons

get_password_age()

password age

get_flags()

flags

get_script_path()

script path

get_groups()

groups

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 51 
 

Top Package::Actor

DomainReporter Domain

generate()

get_domain_name()

domain name

get_domain_controllers()

domain controllers

get_policy()

policy

get_groups()

groups

get_users()

users

Group User

group.get_group_name()

group name

group.get_group_comment()

group comment

group.get_members()

members

get_name()

name

get_comment()

comment

get_country_code()

country code

get_last_logon()

last logon

get_password_expired()

password expired

get_fulll_name()

full name

get_code_page()

code page

get_priv()

priv

get_auth_flags()

auth flags

get_logon_server()

logon server

get_home_dir()

home dir

get_home_dir_drive()

home dir drive

get_usr_comment()

usr comment

get_profile()

profile

get_acct_expires()

acct expires

get_primary_group_id()

primary group id

get_bad_pw_count()

bad pw count

get_user_id()

user id

get_password()

password

get_units per week()

units per week

get_last_logoff()

last logoff

get_max_storage()

max storage

get_num_logons()

num logons

get_password_age()

password age

get_flags()

flags

get_script_path()

script path

get_groups()

groups

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 52 
 

3.10 LocalReporter 

Top Package::Actor

LocalReporter Host

generate()

get_name()

host name

get_policy()

policy

get_groups()

groups

get_users()

users

Group User

group.get_group_name()

group name

group.get_group_comment()

group comment

group.get_members()

members

get_name()

name

get_comment()

comment

get_country_code()

country code

get_last_logon()

last logon

get_password_expired()

password expired

get_fulll_name()

full name

get_code_page()

code page

get_priv()

priv

get_auth_flags()

auth flags

get_logon_server()

logon server

get_home_dir()

home dir

get_home_dir_drive()

home dir drive

get_usr_comment()

usr comment

get_profile()

profile

get_acct_expires()

acct expires

get_primary_group_id()

primary group id

get_bad_pw_count()

bad pw count

get_user_id()

user id

get_password()

password

get_units per week()

units per week

get_last_logoff()

last logoff

get_max_storage()

max storage

get_num_logons()

num logons

get_password_age()

password age

get_flags()

flags

get_script_path()

script path

get_groups()

groups

get_services()

services

get_shares()

shares

 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 53 
 

Top Package::Actor

LocalReporter Host

generate()

get_name()

host name

get_policy()

policy

get_groups()

groups

get_users()

users

Group User

group.get_group_name()

group name

group.get_group_comment()

group comment

group.get_members()

members

get_name()

name

get_comment()

comment

get_country_code()

country code

get_last_logon()

last logon

get_password_expired()

password expired

get_fulll_name()

full name

get_code_page()

code page

get_priv()

priv

get_auth_flags()

auth flags

get_logon_server()

logon server

get_home_dir()

home dir

get_home_dir_drive()

home dir drive

get_usr_comment()

usr comment

get_profile()

profile

get_acct_expires()

acct expires

get_primary_group_id()

primary group id

get_bad_pw_count()

bad pw count

get_user_id()

user id

get_password()

password

get_units per week()

units per week

get_last_logoff()

last logoff

get_max_storage()

max storage

get_num_logons()

num logons

get_password_age()

password age

get_flags()

flags

get_script_path()

script path

get_groups()

groups

get_services()

services

get_shares()

shares

 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 54 
 

3.11 AutomatedDomainEnumeration 

DomainAutomationTop Package::User

enumerate()

DomainNameEnumerationControlle
r

enumerate()

get_domain_names()

domain names

DomainControllerEnumerationCon
troller

enumerate()

get_domain_controllers()

domain controllers

PolicyEnumerationController

enumerate()

get_policy()

policy

AuthenticationController

create_sessions()

GroupEnumerationController

enumerate()

get_groups()

groups

GroupMemberEnumerationControll
er

enumerate()

get_members()

members

UserInfoEnumerationController

enumerate()

get_info()

info

GroupMembershipEnumerationCont
roller

enumerate()

get_groups()

groups

destroy_sessions()

Domain

set_domain_name()

set_domain_controller()

set_policy()

set_group()

set_member()

set_user()

Reporter

generate_report()

generate()

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 55 
 

3.12 AutomatedLocalEnumeration 

LocalAutomationTop Package::User

enumerate()

DomainNameEnumerationControlle
r

enumerate()

get_domain_names()

domain names

InterestingHostEnumerationCont
roller

enumerate()

get_hosts()

hosts

PolicyEnumerationController

enumerate()

get_policy()

policy

AuthenticationController

create_sessions()

LocalGroupEnumerationControlle
r

enumerate()

get_groups()

groups

LocalGroupMemberEnumerationCon
troller

enumerate()

get_members()

members

UserInfoEnumerationController

enumerate()

get_info()

info

GroupMembershipEnumerationCont
roller

enumerate()

get_groups()

groups

destroy_sessions()

Host

set_domain_name()

set_domain_controller()

set_policy()

set_group()

set_member()

set_user()

Reporter

generate_report()

generate()

ShareEnumerationController

enumerate()

shares

get_shares()

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 56 
 

3.13 ManualEnumeration 

Top Package::Actor

DomainManual
DomainNameEnumerationControlle

r

DomainControllerEnumerationCon
troller

PolicyEnumerationControllerAuthenticationController GroupEnumerationController
GroupMemberEnumerationControll

er UserInfoEnumerationController
GroupMembershipEnumerationCont

roller Domain Reporter

enumerate_domain_names()

enumerate()

get_domain_names()

domain names

set_domain_name()

enumerate_domain_controllers()

enumerate()

get_domain_controllers()

domain controllers

set_domain_controllers()

enumerate_domain_policies()

create_sessions()

enumerate()

get_policy()

policy

set_policy()

destroy_sessions()

enumerate_domain_groups()

create_sessions()

enumerate()

get_groups()

groups

set_group()

destroy_sessions()

enumerate_domain_group_members()

create_sessions()

enumerate()

get_members()

members

destroy_sessions()

enumerate_user_info()

create_sessions()

enumerate()

get_info()

info

set_member()

set_user()

enumerate_users()

UserEnumerationController

destroy_sessions()

create_sessions()

enumerate()

get_users()

users

destroy_sessions()

set_user()

enumerate_group_membership()

create_sessions()

enumerate()

get_groups()

groups

destroy_sessions()

set_user()

generate_report()

generate()

 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton UML Page 57 
 

Top Package::Actor

DomainManual
DomainNameEnumerationControlle

r

DomainControllerEnumerationCon
troller

PolicyEnumerationControllerAuthenticationController GroupEnumerationController
GroupMemberEnumerationControll

er UserInfoEnumerationController
GroupMembershipEnumerationCont

roller Domain Reporter

enumerate_domain_names()

enumerate()

get_domain_names()

domain names

set_domain_name()

enumerate_domain_controllers()

enumerate()

get_domain_controllers()

domain controllers

set_domain_controllers()

enumerate_domain_policies()

create_sessions()

enumerate()

get_policy()

policy

set_policy()

destroy_sessions()

enumerate_domain_groups()

create_sessions()

enumerate()

get_groups()

groups

set_group()

destroy_sessions()

enumerate_domain_group_members()

create_sessions()

enumerate()

get_members()

members

destroy_sessions()

enumerate_user_info()

create_sessions()

enumerate()

get_info()

info

set_member()

set_user()

enumerate_users()

UserEnumerationController

destroy_sessions()

create_sessions()

enumerate()

get_users()

users

destroy_sessions()

set_user()

enumerate_group_membership()

create_sessions()

enumerate()

get_groups()

groups

destroy_sessions()

set_user()

generate_report()

generate()

 





Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Config Page 1 
 

Appendix D: Test Bed Configuration 

The testing environment was configured as follows: 

Two Windows Servers (2012 and 2008 R2) with the static IP addresses 10.10.10.1 and 

10.10.10.2 respectively were setup each with Active Directory, DNS, WINS DHCP installed. 

DHCP was configured to serve addresses in the range 10.0.0.0/8 range (excluding the 

server’s addresses) and advertise 10.10.10.1 and 10.10.10.2 as DNS servers. WINS was 

configured on the 2008r2 and replicated to the 2012 server. Active Directory was setup 

using the domain name ‘testdomain.local’ and allowed to configure the DNS service 

appropriately. This gave these two servers the role of Domain Controller within the 

‘testdomain.local’ domain. 

The default accounts policies were left unchanged: 

Force user logoff how long after time expires?: Never 
Minimum password age (days): 1 
Maximum password age (days): 42 
Minimum password length: 7 
Length of password history maintained: 24 
Lockout threshold: Never 
Lockout duration (minutes): 30 
Lockout observation window (minutes): 30 

 
Along with the standard domain users and groups 50 users and 50 groups were created 

within the Active Directory. Each of the 50 groups were assigned 10 users as group 

members. This resulted in a total of 61 groups with a varied number of group members and 

a total of 52 user accounts and 2 machine accounts in the domain. The table below show 

the group membership within active directory. The “Domain Users” group contains all user 

accounts within the domain. 

Domain Groups 

Group Name Group Comment Group Members 

DnsUpdateProxy DNS clients who are 
permitted to perform 
dynamic updates on 
behalf of some other 
clients (such as DHCP 
servers). 

 

Domain Admins Designated administrators 
of the domain 

Administrator 

Domain Computers All workstations and 
servers joined to the 
domain 

 

Domain Controllers All domain controllers in 
the domain 

WIN-52VR2HTADOK$, 

WIN-CKU3D6EPQKA$ 

Domain Guests All domain guests  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Config Page 2 
 

Domain Users All domain users Administrator, krbtgt, 

user1, user2, user3, user4, 

user5, user6, user7, user8, 

user9, user10, user11, 

user12, user13, user14, 

user15, user16, user17, 

user18, user19, user20, 

user21, user22, user23, 

user24, user25, user26, 

user27, user28, user29, 

user30, user31, user32, 

user33, user34, user35, 

user36, user37, user38, 

user39, user40, user41, 

user42, user43, user44, 

user45, user46, user47, 

user48, user49, user50 

Enterprise Admins Designated administrators 
of the enterprise 

Administrator 

Enterprise Read-only 
Domain Controllers 

Members of this group are 
Read-Only Domain 
Controllers in the 
enterprise 

 

Group Policy Creator 
Owners 

Members in this group can 
modify group policy for 
the domain 

Administrator 

Read-only Domain 
Controllers 

Members of this group are 
read-only domain 
controllers in the domain 

 

Schema Admins Designated administrators 
of the schema 

Administrator 

group1 test group 1 user1, user2, user3, user4, 

user5, user6, user7, user8, 

user9, user10 

group2 test group 2 user2, user3, user4, user5, 

user6, user7, user8, user9, 

user10, user11 

group3 test group 3 user3, user4, user5, user6, 

user7, user8, user9, 

user10, user11, user12 

group4 test group 4 user4, user5, user6, user7, 

user8, user9, user10, 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Config Page 3 
 

user11, user12, user13 

group5 test group 5 user5, user6, user7, user8, 

user9, user10, user11, 

user12, user13, user14 

group6 test group 6 user6, user7, user8, user9, 

user10, user11, user12, 

user13, user14, user15 

group7 test group 7 user7, user8, user9, 

user10, user11, user12, 

user13, user14, user15, 

user16 

group8 test group 8 user8, user9, user10, 

user11, user12, user13, 

user14, user15, user16, 

user17 

group9 test group 9 user9, user10, user11, 

user12, user13, user14, 

user15, user16, user17, 

user18 

group10 test group 10 user10, user11, user12, 

user13, user14, user15, 

user16, user17, user18, 

user19 

group11 test group 11 user11, user12, user13, 

user14, user15, user16, 

user17, user18, user19, 

user20 

group12 test group 12 user12, user13, user14, 

user15, user16, user17, 

user18, user19, user20, 

user21 

group13 test group 13 user13, user14, user15, 

user16, user17, user18, 

user19, user20, user21, 

user22 

group14 test group 14 user14, user15, user16, 

user17, user18, user19, 

user20, user21, user22, 

user23 

group15 test group 15 user15, user16, user17, 

user18, user19, user20, 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Config Page 4 
 

user21, user22, user23, 

user24 

group16 test group 16 user16, user17, user18, 

user19, user20, user21, 

user22, user23, user24, 

user25 

group17 test group 17 user17, user18, user19, 

user20, user21, user22, 

user23, user24, user25, 

user26 

group18 test group 18 user18, user19, user20, 

user21, user22, user23, 

user24, user25, user26, 

user27 

group19 test group 19 user19, user20, user21, 

user22, user23, user24, 

user25, user26, user27, 

user28 

group20 test group 20 user20, user21, user22, 

user23, user24, user25, 

user26, user27, user28, 

user29 

group21 test group 21 user21, user22, user23, 

user24, user25, user26, 

user27, user28, user29, 

user30 

group22 test group 22 user22, user23, user24, 

user25, user26, user27, 

user28, user29, user30, 

user31 

group23 test group 23 user23, user24, user25, 

user26, user27, user28, 

user29, user30, user31, 

user32 

group24 test group 24 user24, user25, user26, 

user27, user28, user29, 

user30, user31, user32, 

user33 

group25 test group 25 user25, user26, user27, 

user28, user29, user30, 

user31, user32, user33, 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Config Page 5 
 

user34 

group26 test group 26 user26, user27, user28, 

user29, user30, user31, 

user32, user33, user34, 

user35 

group27 test group 27 user27, user28, user29, 

user30, user31, user32, 

user33, user34, user35, 

user36 

group28 test group 28 user28, user29, user30, 

user31, user32, user33, 

user34, user35, user36, 

user37 

group29 test group 29 user29, user30, user31, 

user32, user33, user34, 

user35, user36, user37, 

user38 

group30 test group 30 user30, user31, user32, 

user33, user34, user35, 

user36, user37, user38, 

user39 

group31 test group 31 user31, user32, user33, 

user34, user35, user36, 

user37, user38, user39, 

user40 

group32 test group 32 user32, user33, user34, 

user35, user36, user37, 

user38, user39, user40, 

user41 

group33 test group 33 user33, user34, user35, 

user36, user37, user38, 

user39, user40, user41, 

user42 

group34 test group 34 user34, user35, user36, 

user37, user38, user39, 

user40, user41, user42, 

user43 

group35 test group 35 user35, user36, user37, 

user38, user39, user40, 

user41, user42, user43, 

user44 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Config Page 6 
 

group36 test group 36 user36, user37, user38, 

user39, user40, user41, 

user42, user43, user44, 

user45 

group37 test group 37 user37, user38, user39, 

user40, user41, user42, 

user43, user44, user45, 

user46 

group38 test group 38 user38, user39, user40, 

user41, user42, user43, 

user44, user45, user46, 

user47 

group39 test group 39 user39, user40, user41, 

user42, user43, user44, 

user45, user46, user47, 

user48 

group40 test group 40 user40, user41, user42, 

user43, user44, user45, 

user46, user47, user48, 

user49 

group41 test group 41 user41, user42, user43, 

user44, user45, user46, 

user47, user48, user49, 

user50 

group42 test group 42 user42, user43, user44, 

user45, user46, user47, 

user48, user49, user50, 

user1 

group43 test group 43 user43, user44, user45, 

user46, user47, user48, 

user49, user50, user1, 

user2 

group44 test group 44 user44, user45, user46, 

user47, user48, user49, 

user50, user1, user2, 

user3 

group45 test group 45 user45, user46, user47, 

user48, user49, user50, 

user1, user2, user3, user4 

group46 test group 46 user46, user47, user48, 

user49, user50, user1, 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Config Page 7 
 

user2, user3, user4, user5 

group47 test group 47 user47, user48, user49, 

user50, user1, user2, 

user3, user4, user5, user6 

group48 test group 48 user48, user49, user50, 

user1, user2, user3, user4, 

user5, user6, user7 

group49 test group 49 user49, user50, user1, 

user2, user3, user4, user5, 

user6, user7, user8 

group50 test group 50 user50, user1, user2, 

user3, user4, user5, user6, 

user7, user8, user9 

 

The server 10.10.10.1 was used for local enumeration with the default users and groups. 

Note, since this host is a domain controller the 50 users that were created also exist as local 

users. The table below shows the groups and membership that exist. 

   

Group Name Group Comment Group Members 

Account Operators Members can administer 

domain user and group accounts 

 

Administrators Administrators have complete 

and unrestricted access to the 

computer/domain 

Administrator, Domain 

Admins, Enterprise 

Admins 

Allowed RODC Password 

Replication Group 

Members in this group can have 

their passwords replicated to all 

read-only domain controllers in 

the domain 

 

Backup Operators Backup Operators can override 

security restrictions for the sole 

purpose of backing up and 

restoring files 

 

Cert Publishers Members of this group are 

permitted to publish certificates 

to the directory 

 

Certificate Service DCOM 

Access 

Members of this group are 

allowed to connect to 

Certification Authorities in the 

enterprise 

 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Config Page 8 
 

Cryptographic Operators Members are authorized to 

perform cryptographic 

operations 

 

Denied RODC Password 

Replication Group 

Members in this group cannot 

have their passwords replicated 

to any read-only domain 

controllers in the domain 

Cert Publishers, Domain 

Admins, Domain 

Controllers, Enterprise 

Admins, Group Policy 

Creator Owners, krbtgt, 

Read-only Domain 

Controllers, Schema 

Admins 

DHCP Administrators Members who have 

administrative access to the 

DHCP Service 

 

DHCP Users Members who have view-only 

access to the DHCP service 

 

Distributed COM Users Members are allowed to launch, 

activate and use Distributed 

COM objects on this machine. 

 

DnsAdmins DNS Administrators Group  

Event Log Readers Members of this group can read 

event logs from local machine 

 

Guests Guests have the same access as 

members of the Users group by 

default, except for the Guest 

account which is further 

restricted 

Domain Guests, Guest 

IIS_IUSRS Built-in group used by Internet 

Information Services 

ISUR 

Incoming Forest Trust 

Builders 

Members of this group can 

create incoming, on-way trusts 

to this forest 

 

Network Configuration 

Operators 

Members in this group can have 

some administrative privileges 

to manage configuration of 

networking features 

 

Performance Log Users Members of this group may 

schedule logging of performance 

counters, enable trace 

providers, and collect event 

traces both locally and via 

 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Config Page 9 
 

remote access to this computer 

Performance Monitor 

Users 

Members of this group can 

access performance counter 

data locally and remotely 

 

Pre-Windows 2000 

Compatible Access 

A backward compatibility group 

which allows read access on all 

users and groups in the domain 

Authenticated Users 

Print Operators Members can administer 

domain printers 

 

RAS and IAS Servers Servers in this group can access 

remote access properties of 

users 

 

Remote Desktop Users Members in this group are 

granted the right to logon 

remotely 

 

Replicator Supports file replication in a 

domain 

 

Server Operators Members can administer 

domain servers 

 

Terminal Server License 

Servers 

Members of this group can 

update user accounts in Active 

Directory with information 

about license issuance, for the 

purpose of tracking and 

reporting TS Per User CAL usage 

 

Users Users are prevented from 

making accidental or intentional 

system-wide changes and can 

run most applications 

Domain Users, 

Authenticated Users, 

INTERACTIVE 

Windows Authorization 

Access Group 

Members of this group have 

access to the computed 

tokenGroupsGlobalAndUniversal 

attribute on User objects 

ENTERPRISE DOMAIN 

CONTROLLERS 

 

  





Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 1 
 

Appendix E: Testing Results 

1. Unit Testing 

1.1. Authenticators 

Test # Case Expected Actual Comments Pass/Fail 

1.1.1.  CredsSMBAuthenticaitonTestCase    P 

1.1.1.1.  test_valid 
Create SMBAuthenticator with valid credentials 
and call authenticate method. 

Authenticate returns 
True 

Authenticate returns 
True 

 P 

1.1.1.2.  test_invalid_password 
Create SMBAuthenticator with valid credentials 

except password and call authenticate 
method. 

Authenticate returns 
False 

Authenticate returns 
False 

 P 

1.1.1.3.  test_invalid_user 
Create SMBAuthenticator with valid credentials 
except user name and call authenticate method. 

Authenticate returns 
False 

Authenticate returns 
False 

 P 

1.1.2.  InvalidSMBAuthenticationTestCase    P 

1.1.2.1.  test_invalid_host 
Create SMBAuthenticator with valid details 
except host 

Exception raised. Exception raised.  P 

1.1.2.2.  test_invalid_share  
Create SMBAuthenticator with valid details 
except share 

Exception raised. Exception raised.  P 

1.1.2.3.  test_invalid_user  
Create SMBAuthenticator with valid details 
except user name 

Exception raised. Exception raised.  P 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 2 
 

Test # Case Expected Actual Comments Pass/Fail 

1.1.2.4.  test_invalid_passwd  
Create SMBAuthenticator with valid details 
except password 

Exception raised. Exception raised.  P 

1.1.2.5.  test_invalid_domain  
Create SMBAuthenticator with valid details 
except domain 

Exception raised. Exception raised.  P 

1.1.3.  SMBDeauthenticationTestCase    P 

1.1.3.1.  test_valid 
Call deauthenticate method of 
SMBAuthenticator 

No exception raised No exception raised  P 

1.1.4.  CredsSNMPAuthenticationTestCase    P 

1.1.4.1.  test_valid 
Create SMBAuthenticator with valid credentials 
and call authenticate method. 

Authenticate returns 
True 

Authenticate returns 
True 

 P 

1.1.4.2.  test_invalid_community_string 
Create SMBAuthenticator with valid credentials 
except community string and call authenticate 
method. 

Authenticate returns 
False 

Authenticate returns 
False 

 P 

1.1.5.  InvalidSNMPAuthenticationTestCase    P 

1.1.5.1.  test_invalid_host 
Create SMBAuthenticator with valid details 
except host 

Exception raised. Exception raised.  P 

1.1.5.2.  test_invalid_community_string 
Create SMBAuthenticator with valid details 
except community string 

Exception raised. Exception raised.  P 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 3 
 

1.2. Enumerators 

Test # Case Expected Actual Comments Pass/Fail 

1.2.1.  LocalGroupSMBEnumerationTestCase    P 

1.2.1.1.  test_valid 
Create NetLocalGroupEnum with valid details 
and call enumerate method. 

Return non-empty 
list. 

Return non-empty 
list. 

 P 

1.2.1.2.  test_invalid_auth 
Create NetLocalGroupEnum with valid details 
except auth 

Exception raised Exception raised  P 

1.2.1.3.  test_invalid_host 
Create NetLocalGroupEnum with valid details 
except host 

Exception raised Exception raised  P 

1.2.2.  LocalGroupMembersSMBEnumerationTestCase    P 

1.2.2.1.  test_valid 
Create NetLocalGroupGetMembers with valid 
details and call enumerate method. 

Return non-empty 
list 

Return non-empty 
list 

 P 

1.2.2.2.  test_invalid_auth 
Create NetLocalGroupGetMembers with valid 
details except auth. 

Exception raised Exception raised  P 

1.2.2.3.  test_invalid_host 
Create NetLocalGroupGetMembers with valid 
details except host. 

Exception raised Exception raised  P 

1.2.2.4.  test_invalid_group 
Create NetLocalGroupGetMembers with valid 
details except group. 

Exception raised Exception raised  P 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 4 
 

Test # Case Expected Actual Comments Pass/Fail 

1.2.2.5.  test_nonexistant_group 
Create NetLocalGroupGetMembers with valid 
details except non-existant group name 
supplied, and call enumerate method. 

Empty list returned. Empty list returned.  P 

1.2.3.  LocalUsersSMBEnumerationTestCase    P 

1.2.3.1.  test_valid 
Create NetUserEnum with valid details and call 
enumerate method. 

Return non-empty 
list  

Return non-empty 
list  

 P 

1.2.3.2.  test_invalid_auth 
Create NetUserEnum with valid details except 
auth. 

Exception raised Exception raised  P 

1.2.3.3.  test_invalid_host 
Create NetUserEnum with valid details except 
host. 

Exception raised Exception raised  P 

1.2.4.  LocalUserInfoSMBEnumerationTestCase    P 

1.2.4.1.  test_valid 
Create NetUserGetInfo with valid details and 
call enumerate method. 

Return non-empty 
dictionary  

Return non-empty 
dictionary  

 P 

1.2.4.2.  test_invalid_auth 
Create NetUserGetInfo with valid details except 
auth. 

Exception raised Exception raised  P 

1.2.4.3.  test_invalid_host 
Create NetUserGetInfo with valid details except 
host. 

Exception raised Exception raised  P 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 5 
 

Test # Case Expected Actual Comments Pass/Fail 

1.2.4.4.  test_invalid_user 
Create NetUserGetInfo with valid details except 
user. 

Exception raised Exception raised  P 

1.2.4.5.  test_nonexistant_user 
Create NetUserEnum with valid details except 
non-existent user specified and call enumerate 
method. 

Empty dictionary 
returned. 

Empty dictionary 
returned. 

 P 

1.2.5.  LocalGroupMembershipSMBEnumerationTestCa
se 

   P 

1.2.5.1.  test_valid 
Create NetUserGetLocalGroups with valid 
details and call enumerate method. 

Return non-empty 
list  

Return non-empty 
list  

 P 

1.2.5.2.  test_invalid_auth 
Create NetUserGetLocalGroups with valid 
details except auth. 

Exception raised Exception raised  P 

1.2.5.3.  test_invalid_host 
Create NetUserGetLocalGroups with valid 
details except host. 

Exception raised Exception raised  P 

1.2.5.4.  test_invalid_user 
Create NetUserGetLocalGroups with valid 
details except user. 

Exception raised Exception raised  P 

1.2.5.5.  test_nonexistant_user 
Create NetUserGetLocalGroups with valid 
details except non-existent user specified and 
call enumerate method. 

Empty list returned. Empty list returned.  P 

1.2.6.  LocalPasswordPolicySMBEnumerationTestCase    P 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 6 
 

Test # Case Expected Actual Comments Pass/Fail 

1.2.6.1.  test_valid 
Create PasswordPolicy with valid details and call 
enumerate method. 

Return dictionary 
not equal to default 
value.  

Return dictionary 
not equal to default 
value.  

 P 

1.2.6.2.  test_invalid_auth 
Create PasswordPolicy with valid details except 
auth. 

Exception raised Exception raised  P 

1.2.6.3.  test_invalid_host 
Create PasswordPolicy with valid details except 
host. 

Exception raised Exception raised  P 

1.2.7.  LocalLockoutPolicySMBEnumerationTestCase    P 

1.2.7.1.  test_valid 
Create LockoutPolicy with valid details and call 
enumerate method. 

Return dictionary 
not equal to default 
value.  

Return dictionary 
not equal to default 
value.  

 P 

1.2.7.2.  test_invalid_auth 
Create LockoutPolicy with valid details except 
auth. 

Exception raised Exception raised  P 

1.2.7.3.  test_invalid_host 
Create LockoutPolicy with valid details except 
host. 

Exception raised Exception raised  P 

1.2.8.  DomainGroupSMBEnumerationTestCase    P 

1.2.8.1.  test_valid 
Create NetGroupEnum with valid details and call 
enumerate method. 

Return non-empty 
list. 

Return non-empty 
list. 

 P 

1.2.8.2.  test_invalid_auth 
Create NetGroupEnum with valid details except 
auth. 

Exception raised Exception raised  P 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 7 
 

Test # Case Expected Actual Comments Pass/Fail 

1.2.8.3.  test_invalid_host 
Create NetGroupEnum with valid details except 
host. 

Exception raised Exception raised  P 

1.2.9.  DomainGroupMembersSMBEnumerationTestCa
se 

   P 

1.2.9.1.  test_valid 
Create NetGroupGetUsers with valid details and 
call enumerate method. 

Return non-empty 
list. 

Return non-empty 
list. 

 P 

1.2.9.2.  test_invalid_auth 
Create NetGroupGetUsers with valid details 
except auth. 

Exception raised Exception raised  P 

1.2.9.3.  test_invalid_host 
Create NetGroupGetUsers with valid details 
except host. 

Exception raised Exception raised  P 

1.2.9.4.  test_invalid_group 
Create NetGroupGetUsers with valid details 
except group. 

Exception raised Exception raised  P 

1.2.9.5.  test_nonexistant_group 
Create NetGroupGetUsers with valid details 
except non-existant group name supplied, and 
call enumerate method. 

Empty list returned. Empty list returned.  P 

1.2.10.  DomainUsersSMBEnumerationTestCase    P 

1.2.10.1.  test_valid 
Create NetUserEnum with valid details and call 
enumerate method. 

Return non-empty 
list. 

Return non-empty 
list. 

 P 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 8 
 

Test # Case Expected Actual Comments Pass/Fail 

1.2.10.2.  test_invalid_auth 
Create NetUserEnum with valid details except 
auth. 

Exception raised Exception raised  P 

1.2.10.3.  test_invalid_host 
Create NetUserEnum with valid details except 
host. 

Exception raised Exception raised  P 

1.2.11.  DomainUserInfoSMBEnumerationTestCase     

1.2.11.1.  test_valid 
Create NetUserGetInfo with valid details and 
call enumerate method. 

Return non-empty 
dictionary  

Return non-empty 
dictionary  

 P 

1.2.11.2.  test_invalid_auth 
Create NetUserGetInfo with valid details except 
auth. 

Exception raised Exception raised  P 

1.2.11.3.  test_invalid_host 
Create NetUserGetInfo with valid details except 
host. 

Exception raised Exception raised  P 

1.2.11.4.  test_invalid_user 
Create NetUserGetInfo with valid details except 
user. 

Exception raised Exception raised  P 

1.2.11.5.  test_nonexistant_user 
Create NetUserEnum with valid details except 
non-existent user specified and call enumerate 
method. 

Empty dictionary 
returned. 

Empty dictionary 
returned. 

 P 

1.2.12.  DomainGroupMembershipSMBEnumerationTes
tCase 

   P 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 9 
 

Test # Case Expected Actual Comments Pass/Fail 

1.2.12.1.  test_valid 
Create NetUserGetGroups with valid details and 
call enumerate method. 

Return non-empty 
list  

Return non-empty 
list  

 P 

1.2.12.2.  test_invalid_auth 
Create NetUserGetGroups with valid details 
except auth. 

Exception raised Exception raised  P 

1.2.12.3.  test_invalid_host 
Create NetUserGetGroups with valid details 
except host. 

Exception raised Exception raised  P 

1.2.12.4.  test_invalid_user 
Create NetUserGetGroups with valid details 
except user. 

Exception raised Exception raised  P 

1.2.12.5.  test_nonexistant_user 
Create NetUserGetGroups with valid details 
except non-existent user specified and call 
enumerate method. 

Empty list returned. Empty list returned.  P 

1.2.13.  DomainPasswordPolicySMBEnumerationTestCas
e 

   P 

1.2.13.1.  test_valid 
Create PasswordPolicy with valid details and call 
enumerate method. 

Return dictionary 
not equal to default 
value.  

Return dictionary 
not equal to default 
value.  

 P 

1.2.13.2.  test_invalid_auth 
Create PasswordPolicy with valid details except 
auth. 

Exception raised Exception raised  P 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 10 
 

Test # Case Expected Actual Comments Pass/Fail 

1.2.13.3.  test_invalid_host 
Create PasswordPolicy with valid details except 
host. 

Exception raised Exception raised  P 

1.2.14.  DomainLockoutPolicySMBEnumerationTestCase    P 

1.2.14.1.  test_valid 
Create LockoutPolicy with valid details and call 
enumerate method. 

Return dictionary 
not equal to default 
value.  

Return dictionary 
not equal to default 
value.  

 P 

1.2.14.2.  test_invalid_auth 
Create LockoutPolicy with valid details except 
auth. 

Exception raised Exception raised  P 

1.2.14.3.  test_invalid_host 
Create LockoutPolicy with valid details except 
host. 

Exception raised Exception raised  P 

1.2.15.  UserSNMPEnumerationTestCase    P 

1.2.15.1.  test_valid 
Create SNMPUserEnum with valid details and 
call enumerate method. 

Return non-empty 
list. 

Return non-empty 
list. 

 P 

1.2.15.2.  test_invalid_auth 
Create SNMPUserEnum with valid details except 
auth. 

Exception raised Exception raised  P 

1.2.15.3.  test_invalid_host 
Create SNMPUserEnum with valid details except 
host. 

Exception raised Exception raised  P 

1.2.16.  FromFQDNDomainNameEnumerationTestCase    P 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 11 
 

Test # Case Expected Actual Comments Pass/Fail 

1.2.16.1.  test_valid 
Create FromFQDN object and call enumerate 
method 

Return non-empty 
list 

Return non-empty 
list 

 P 

1.2.17.  FromObjectDomainNameEnumerationTestCase    P 

1.2.17.1.  test_valid 
Create FromObject object and call enumerate 
method 

Return non-empty 
list 

Return non-empty 
list 

 P 

1.2.18.  FromDNSServFQDNDomainNameEnumerationT
estCase 

   P 

1.2.18.1.  test_valid 
Create FromDNSServFQDN object and call 
enumerate method 

Return non-empty 
list 

Return non-empty 
list 

 P 

1.2.19.  FromMasterDomainNameEnumerationTestCase     

1.2.19.1.  test_valid 
Create FromMaster object and call enumerate 
method 

Return non-empty 
list 

Return non-empty 
list 

From Master not 
implemented 

F 

1.2.20.  DNSLookupDomainControllerEnumerationTestC
ase 

   P 

1.2.20.1.  test_valid 
Create DNSLookup object with valid domain 
name and call enumerate method. 

Return non-empty 
list 

Return non-empty 
list 

 P 

1.2.20.2.  test_invalid_domain_name 
Create DNSLookup object with invalid domain 
name and call enumerate method. 

Exception raised Exception raised  P 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 12 
 

Test # Case Expected Actual Comments Pass/Fail 

1.2.20.3.  test_nonexistent_domain_name 
Create DNSLookup object with non-existent 
domain name and call enumerate method. 

Return empty list Return empty list  P 

1.2.21.  NetGetDCDomainControllerEnumerationTestCa
se 

   P 

1.2.21.1.  test_valid 
Create NetGetDC object with valid domain 
name and call enumerate method. 

Return non-empty 
list 

Return non-empty 
list 

 P 

1.2.21.2.  test_invalid_domain_name 
Create NetGetDC object with invalid domain 
name and call enumerate method. 

Exception raised Exception raised  P 

1.2.21.3.  test_nonexistent_domain_name 
Create NetGetDC object with non-existent 
domain name and call enumerate method. 

Return empty list Return empty list  P 

1.2.22.  DsGetDCNameDomainControllerEnumerationTe
stCase 

   P 

1.2.22.1.  test_valid 
Create DsGetDCName object with valid domain 
name and call enumerate method. 

Return non-empty 
list 

Return non-empty 
list 

 P 

1.2.22.2.  test_invalid_domain_name 
Create DsGetDCName object with invalid 
domain name and call enumerate method. 

Exception raised Exception raised  P 

1.2.22.3.  test_nonexistent_domain_name 
Create DsGetDCName object with non-existent 
domain name and call enumerate method. 

Return empty list Return empty list  P 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 13 
 

1.3. Reporters 

Test # Case Expected Actual Comments Pass/Fail 

1.3.1.  LocalReporterTestCase    P 

1.3.1.1.  test_valid_data 
Create LocalXMLReporter providing an instance 
of Host data structure in a list.  

None empty file 
created. 

None empty file 
created. 

 P 

1.3.1.2.  test_invalid_data1 
Create LocalXMLReporter providing an instance 
of Domain data structure in a list. 

Exception raised Exception raised  P 

1.3.1.3.  test_invalid_data2 
Create LocalXMLReporter providing an instance 
of Host data structure. 

Exception raised Exception raised  P 

1.3.1.4.  test_malformed_data1 
Create LocalXMLReporter providing an instance 
of Host data structure (in a list) with malformed 
data as the top level variables (e.g. 
‘_users=None’). 

None empty file 
created. 

None empty file 
created. 

 P 

1.3.1.5.  test_malforded_data2 
Create LocalXMLReporter providing an instance 
of Host data structure (in a list) with malformed 
data as the second level variables (e.g. ‘_users’ 
is a list of User instances with variables set to 
‘None’). 

None empty file 
created. 

None empty file 
created. 

 P 

1.3.2.  DomainReporterTestCase    P 

1.3.2.1.  test_valid_data 
Create DomainXMLReporter providing an 
instance of Host data structure in a list.  

None empty file 
created. 

None empty file 
created. 

 P 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 14 
 

Test # Case Expected Actual Comments Pass/Fail 

1.3.2.2.  test_invalid_data1 
Create DomainXMLReporter providing an 
instance of Domain data structure in a list. 

Exception raised Exception raised  P 

1.3.2.3.  test_invalid_data2 
Create DomainXMLReporter providing an 
instance of Host data structure. 

Exception raised Exception raised  P 

1.3.2.4.  test_malformed_data1 
Create DomainXMLReporter providing an 
instance of Host data structure (in a list) with 
malformed data as the top level variables (e.g. 
‘_users=None’). 

None empty file 
created. 

None empty file 
created. 

 P 

1.3.2.5.  test_malforded_data2 
Create DomainXMLReporter providing an 
instance of Host data structure (in a list) with 
malformed data as the second level variables 
(e.g. ‘_users’ is a list of User instances with 
variables set to ‘None’). 

None empty file 
created. 

None empty file 
created. 

 P 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 15 
 

2. Integration Testing 

2.1. Automation 

Test # Case Expected Actual Comments Pass/Fail 

2.1.1.  Domain Automation 
User specifies domain automation. 
System enumerates all information and 
generates a report. 

File created 
containing 
enumerated 
information. 

File created 
containing 
enumerated 
information. 

 P 

2.1.2.  Local Automation 
User specifies local automation. 
System enumerates all information and 
generates a report. 

File created 
containing 
enumerated 
information. 

File created 
containing 
enumerated 
information. 

 P 

 

2.2. Manual 

Test # Case Expected Actual Comments Pass/Fail 

2.2.1.  Local    P 

2.2.1.1.  enumerate_interesting_hosts 
User specifies enumerating a list of interesting 
hosts. 
System enumerates the information and 
generates a report. 

File containing 
enumerated 
information. 

File containing 
enumerated 
information. 

 P 

2.2.1.2.  enumerate_local_policies 
User specifies enumerating a local policy. 
System enumerates the information and 
generates a report. 

File containing 
enumerated 
information. 

File containing 
enumerated 
information. 

 P 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 16 
 

Test # Case Expected Actual Comments Pass/Fail 

2.2.1.3.  enumerate_local_groups 
User specifies enumerating a local groups. 
System enumerates the information and 
generates a report. 

File containing 
enumerated 
information. 

File containing 
enumerated 
information. 

 P 

2.2.1.4.  enumerate_local_group_members 
User specifies enumerating a local group 
members. 
System enumerates the information and 
generates a report. 

File containing 
enumerated 
information. 

File containing 
enumerated 
information. 

 P 

2.2.1.5.  enumerate_local_users 
User specifies enumerating a local users. 
System enumerates the information and 
generates a report. 

File containing 
enumerated 
information. 

File containing 
enumerated 
information. 

 P 

2.2.1.6.  enumerate_local_user 
User specifies enumerating a local user 
information. 
System enumerates the information and 
generates a report. 

File containing 
enumerated 
information. 

File containing 
enumerated 
information. 

 P 

2.2.1.7.  enumerate_group_membership 
User specifies enumerating a local user group 
membership. 
System enumerates the information and 
generates a report. 

File containing 
enumerated 
information. 

File containing 
enumerated 
information. 

 P 

2.2.2.  Domain    P 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 17 
 

Test # Case Expected Actual Comments Pass/Fail 

2.2.2.1.  enumerate_domain_names 
User specifies enumerating a list of domain 
names. 
System enumerates the information and 
generates a report. 

File containing 
enumerated 
information. 

File containing 
enumerated 
information. 

 P 

2.2.2.2.  enumerate_domain_controllers 
User specifies enumerating a list of domain 
controllers. 
System enumerates the information and 
generates a report. 

File containing 
enumerated 
information. 

File containing 
enumerated 
information. 

 P 

2.2.2.3.  enumerate_domain_policies 
User specifies enumerating a domain policies. 
System enumerates the information and 
generates a report. 

File containing 
enumerated 
information. 

File containing 
enumerated 
information. 

 P 

2.2.2.4.  enumerate_domain_groups 
User specifies enumerating domain groups. 
System enumerates the information and 
generates a report. 

File containing 
enumerated 
information. 

File containing 
enumerated 
information. 

 P 

2.2.2.5.  enumerate_domain_group_members 
User specifies enumerating domain group 
members. 
System enumerates the information and 
generates a report. 

File containing 
enumerated 
information. 

File containing 
enumerated 
information. 

 P 

2.2.2.6.  enumerate_domain_users 
User specifies enumerating domain users. 
System enumerates the information and 
generates a report. 

File containing 
enumerated 
information. 

File containing 
enumerated 
information. 

 P 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 18 
 

Test # Case Expected Actual Comments Pass/Fail 

2.2.2.7.  enumerate_domain_user 
User specifies enumerating domain user 
information. 
System enumerates the information and 
generates a report. 

File containing 
enumerated 
information. 

File containing 
enumerated 
information. 

 P 

2.2.2.8.  enumerate_group_membership 
User specifies enumerating domain user group 
membership. 
System enumerates the information and 
generates a report. 

File containing 
enumerated 
information. 

File containing 
enumerated 
information. 

 P 

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 19 
 

3. System Testing 

3.1. Requirements 

Test # Case Expected Actual Comments Pass/Fail 

3.1.1.  Essential    P 

3.1.1.1.  Run on a machine that is not a member of a 
domain 

Enumeration 
functions. 

Enumeration 
functions. 

 P 

3.1.1.2.  Run on a Microsoft Windows machine Enumeration 
functions. 

Enumeration 
functions on 
Windows 7 x64. 

Other versions of 
windows were not 
tested. 

P 

3.1.1.3.  Identify domain names on a local area network List of domain 
names enumerated. 

List of domain 
names enumerated. 

 P 

3.1.1.4.  Identify domain controllers List of domain 
controllers 
enumerated. 

List of domain 
controllers 
enumerated. 

 P 

3.1.1.5.  Retrieve a list of users from the active directory List of users 
enumerated. 

List of users 
enumerated. 

 P 

3.1.1.6.  Retrieve a list of groups from the active 
directory 

List of groups 
enumerated. 

List of groups 
enumerated. 

 P 

3.1.1.7.  Retrieve a list of group members from the active 
directory 

List of group 
members 
enumerated. 

List of group 
members 
enumerated. 

 P 

3.1.1.8.  Retrieve user account information from the 
active directory 

User account 
information 
enumerated. 

User account 
information 
enumerated. 

 P 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 20 
 

Test # Case Expected Actual Comments Pass/Fail 

3.1.1.9.  Retrieve the domain accounts policy (Lockout: 
duration, threshold, observation window. 
Password: length, character set) 

Domain accounts 
policy enumerated. 

Domain accounts 
policy enumerated. 

 P 

3.1.1.10.  Perform automated enumeration Automated 
operation. 

Automated 
operation. 

 P 

3.1.1.11.  Output in a parseable and human readable 
format 

Output format 
parseable and 
readable. 

XML output with 
XSLT. 
 

XML is parseable and 
readable in its raw 
form. When viewed 
in a web browser the 
XSLT generates a 
HTML page which is 
easier to read than 
XML. 

P 

3.1.1.12.  Provide a help / usage guide Output usage when 
incorrect parameters 
entered at the 
command line. 
Output usage when 
‘-h’ specified. 
Output help text 
when ‘--help’ 
specified. 

Output usage when 
incorrect parameters 
entered at the 
command line. 
Output usage when 
‘-h’ specified. 
Output help text 
when ‘--help’ 
specified. 

 P 

3.1.2.  Desirable     

3.1.2.1.  Perform directed enumeration Directed 
enumeration 
options. 

Directed 
enumeration 
options. 

 P 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 21 
 

Test # Case Expected Actual Comments Pass/Fail 

3.1.2.2.  Identify services running on hosts Identify a list of 
services running on a 
host. 

  P 

3.1.2.3.  Identify domain trusts List the trust 
relationships 
between domains. 

None Not implemented 
because function not 
available in 
pywin32 

F 

3.1.2.4.  Retrieve a list of users from a local host List of users 
enumerated. 

List of users 
enumerated. 

 P 

3.1.2.5.  Retrieve a list of groups from a local host List of groups 
enumerated. 

List of groups 
enumerated. 

 P 

3.1.2.6.  Retrieve a list of group members a local host  List of group 
members 
enumerated. 

List of group 
members 
enumerated. 

 P 

3.1.2.7.  Retrieve information user account information 
from a local host 

User account 
information 
enumerated. 

User account 
information 
enumerated. 

 P 

3.1.2.8.  Retrieve the local accounts policy (Lockout: 
duration, threshold, observation window. 
Password: length, character set) 

Local accounts policy 
enumerated. 

Local accounts policy 
enumerated. 

 P 

3.1.2.9.  Retrieve a list of shares from a local host List of shares 
available. 

List of shares 
available with 
remark and type. 

 P 

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 22 
 

3.2. Documentation 

Test # Case Expected Actual Comments Pass/Fail 

3.2.1.  Install stated requirements and run examples in 
documentation. 

No additional 
requirements, 
examples function. 

No additional 
requirements, 
examples function. 

 P 

 

  



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 23 
 

3.3. Precision and Recall 

Test # Case Real 
Positive 

(RP) 

Predicted 
Positive 

(PP) 

True 
Positive 

(TP) 

Comment Precision 
= TP/PP 

Recall 
= 

TP/RP 

3.3.1.  Local       

3.3.1.1.  enumerate_interesting_hosts 
for testdomain.local 

2 2 2  1 1 

3.3.1.2.  enumerate_local_policies 8 8 8 Note: Times are displayed in 
seconds in nettynum’s output. 

1 1 

3.3.1.3.  enumerate_local_groups 28 28 28  1 1 

3.3.1.4.  enumerate_local_group_members       

3.3.1.4.1.   Account Operators 0 0 0  1 1 

3.3.1.4.2.  Administrators 4 4 4  1 1 

3.3.1.4.3.  Allowed RODC Password 

Replication Group 

0 0 0  1 1 

3.3.1.4.4.  Backup Operators 0 0 0  1 1 

3.3.1.4.5.  Cert Publishers 0 0 0  1 1 

3.3.1.4.6.  Certificate Service DCOM Access 0 0 0  1 1 

3.3.1.4.7.  Cryptographic Operators 0 0 0  1 1 

3.3.1.4.8.  Denied RODC Password 

Replication Group 

8 8 8  1 1 

3.3.1.4.9.  DHCP Administrators 0 0 0  1 1 

3.3.1.4.10.  DHCP Users 0 0 0  1 1 

3.3.1.4.11.  Distributed COM Users 0 0 0  1 1 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 24 
 

Test # Case Real 
Positive 

(RP) 

Predicted 
Positive 

(PP) 

True 
Positive 

(TP) 

Comment Precision 
= TP/PP 

Recall 
= 

TP/RP 

3.3.1.4.12.  DnsAdmins 0 0 0  1 1 

3.3.1.4.13.  Event Log Readers 0 0 0  1 1 

3.3.1.4.14.  Guests 2 2 2  1 1 

3.3.1.4.15.  IIS_IUSRS 1 1 1  1 1 

3.3.1.4.16.  Incoming Forest Trust Builders 0 0 0  1 1 

3.3.1.4.17.  Network Configuration Operators 0 0 0  1 1 

3.3.1.4.18.  Performance Log Users 0 0 0  1 1 

3.3.1.4.19.  Performance Monitor Users 0 0 0  1 1 

3.3.1.4.20.  Pre-Windows 2000 Compatible 

Access 

1 1 1  1 1 

3.3.1.4.21.  Print Operators 0 0 0  1 1 

3.3.1.4.22.  RAS and IAS Servers 0 0 0  1 1 

3.3.1.4.23.  Remote Desktop Users 0 0 0  1 1 

3.3.1.4.24.  Replicator 0 0 0  1 1 

3.3.1.4.25.  Server Operators 0 0 0  1 1 

3.3.1.4.26.  Terminal Server License Servers 0 0 0  1 1 

3.3.1.4.27.  Users 3 3 3  1 1 

3.3.1.4.28.  Windows Authorization Access 

Group 

1 1 1  1 1 

3.3.1.5.  enumerate_users 53 53 53  1 1 

3.3.1.6.  enumerate_user_info       



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 25 
 

Test # Case Real 
Positive 

(RP) 

Predicted 
Positive 

(PP) 

True 
Positive 

(TP) 

Comment Precision 
= TP/PP 

Recall 
= 

TP/RP 

3.3.1.6.1.  Administrator 29 27 27 Params and logon_hours not 
returned. 

1 0.931 

3.3.1.6.2.  Guest 29 27 27 1 0.931 

3.3.1.6.3.  krbtgt 29 27 27 1 0.931 

3.3.1.6.4.  user1 29 27 27 1 0.931 

3.3.1.6.5.  user2 29 27 27 1 0.931 

3.3.1.6.6.  user3 29 27 27 1 0.931 

3.3.1.6.7.  user4 29 27 27 1 0.931 

3.3.1.6.8.  user5 29 27 27 1 0.931 

3.3.1.6.9.  user6 29 27 27 1 0.931 

3.3.1.6.10.  user7 29 27 27 1 0.931 

3.3.1.6.11.  user8 29 27 27 1 0.931 

3.3.1.6.12.  user9 29 27 27 1 0.931 

3.3.1.6.13.  user10 29 27 27 1 0.931 

3.3.1.6.14.  user11 29 27 27 1 0.931 

3.3.1.6.15.  user12 29 27 27 1 0.931 

3.3.1.6.16.  user13 29 27 27 1 0.931 

3.3.1.6.17.  user14 29 27 27 1 0.931 

3.3.1.6.18.  user15 29 27 27 1 0.931 

3.3.1.6.19.  user16 29 27 27 1 0.931 

3.3.1.6.20.  user17 29 27 27 1 0.931 

3.3.1.6.21.  user18 29 27 27 1 0.931 

3.3.1.6.22.  user19 29 27 27 1 0.931 

3.3.1.6.23.  user20 29 27 27 1 0.931 

3.3.1.6.24.  user21 29 27 27 1 0.931 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 26 
 

Test # Case Real 
Positive 

(RP) 

Predicted 
Positive 

(PP) 

True 
Positive 

(TP) 

Comment Precision 
= TP/PP 

Recall 
= 

TP/RP 

3.3.1.6.25.  user22 29 27 27 1 0.931 

3.3.1.6.26.  user23 29 27 27 1 0.931 

3.3.1.6.27.  user24 29 27 27 1 0.931 

3.3.1.6.28.  user25 29 27 27 1 0.931 

3.3.1.6.29.  user26 29 27 27 1 0.931 

3.3.1.6.30.  user27 29 27 27 1 0.931 

3.3.1.6.31.  user28 29 27 27 1 0.931 

3.3.1.6.32.  user29 29 27 27 1 0.931 

3.3.1.6.33.  user30 29 27 27 1 0.931 

3.3.1.6.34.  user31 29 27 27 1 0.931 

3.3.1.6.35.  user32 29 27 27 1 0.931 

3.3.1.6.36.  user33 29 27 27 1 0.931 

3.3.1.6.37.  user34 29 27 27 1 0.931 

3.3.1.6.38.  user35 29 27 27 1 0.931 

3.3.1.6.39.  user36 29 27 27 1 0.931 

3.3.1.6.40.  user37 29 27 27 1 0.931 

3.3.1.6.41.  user38 29 27 27 1 0.931 

3.3.1.6.42.  user39 29 27 27 1 0.931 

3.3.1.6.43.  user40 29 27 27 1 0.931 

3.3.1.6.44.  user41 29 27 27 1 0.931 

3.3.1.6.45.  user42 29 27 27 1 0.931 

3.3.1.6.46.  user43 29 27 27 1 0.931 

3.3.1.6.47.  user44 29 27 27 1 0.931 

3.3.1.6.48.  user45 29 27 27 1 0.931 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 27 
 

Test # Case Real 
Positive 

(RP) 

Predicted 
Positive 

(PP) 

True 
Positive 

(TP) 

Comment Precision 
= TP/PP 

Recall 
= 

TP/RP 

3.3.1.6.49.  user46 29 27 27 1 0.931 

3.3.1.6.50.  user47 29 27 27 1 0.931 

3.3.1.6.51.  user48 29 27 27 1 0.931 

3.3.1.6.52.  user49 29 27 27 1 0.931 

3.3.1.6.53.  user50 29 27 27 1 0.931 

3.3.1.7.  enumerate_group_membership       

3.3.1.7.1.  Administrator 3 3 3  1 1 

3.3.1.7.2.  Guest 1 1 1  1 1 

3.3.1.7.3.  krbtgt 2 2 2  1 1 

3.3.1.7.4.  user1 1 1 1  1 1 

3.3.1.7.5.  user2 1 1 1  1 1 

3.3.1.7.6.  user3 1 1 1  1 1 

3.3.1.7.7.  user4 1 1 1  1 1 

3.3.1.7.8.  user5 1 1 1  1 1 

3.3.1.7.9.  user6 1 1 1  1 1 

3.3.1.7.10.  user7 1 1 1  1 1 

3.3.1.7.11.  user8 1 1 1  1 1 

3.3.1.7.12.  user9 1 1 1  1 1 

3.3.1.7.13.  user10 1 1 1  1 1 

3.3.1.7.14.  user11 1 1 1  1 1 

3.3.1.7.15.  user12 1 1 1  1 1 

3.3.1.7.16.  user13 1 1 1  1 1 

3.3.1.7.17.  user14 1 1 1  1 1 

3.3.1.7.18.  user15 1 1 1  1 1 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 28 
 

Test # Case Real 
Positive 

(RP) 

Predicted 
Positive 

(PP) 

True 
Positive 

(TP) 

Comment Precision 
= TP/PP 

Recall 
= 

TP/RP 

3.3.1.7.19.  user16 1 1 1  1 1 

3.3.1.7.20.  user17 1 1 1  1 1 

3.3.1.7.21.  user18 1 1 1  1 1 

3.3.1.7.22.  user19 1 1 1  1 1 

3.3.1.7.23.  user20 1 1 1  1 1 

3.3.1.7.24.  user21 1 1 1  1 1 

3.3.1.7.25.  user22 1 1 1  1 1 

3.3.1.7.26.  user23 1 1 1  1 1 

3.3.1.7.27.  user24 1 1 1  1 1 

3.3.1.7.28.  user25 1 1 1  1 1 

3.3.1.7.29.  user26 1 1 1  1 1 

3.3.1.7.30.  user27 1 1 1  1 1 

3.3.1.7.31.  user28 1 1 1  1 1 

3.3.1.7.32.  user29 1 1 1  1 1 

3.3.1.7.33.  user30 1 1 1  1 1 

3.3.1.7.34.  user31 1 1 1  1 1 

3.3.1.7.35.  user32 1 1 1  1 1 

3.3.1.7.36.  user33 1 1 1  1 1 

3.3.1.7.37.  user34 1 1 1  1 1 

3.3.1.7.38.  user35 1 1 1  1 1 

3.3.1.7.39.  user36 1 1 1  1 1 

3.3.1.7.40.  user37 1 1 1  1 1 

3.3.1.7.41.  user38 1 1 1  1 1 

3.3.1.7.42.  user39 1 1 1  1 1 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 29 
 

Test # Case Real 
Positive 

(RP) 

Predicted 
Positive 

(PP) 

True 
Positive 

(TP) 

Comment Precision 
= TP/PP 

Recall 
= 

TP/RP 

3.3.1.7.43.  user40 1 1 1  1 1 

3.3.1.7.44.  user41 1 1 1  1 1 

3.3.1.7.45.  user42 1 1 1  1 1 

3.3.1.7.46.  user43 1 1 1  1 1 

3.3.1.7.47.  user44 1 1 1  1 1 

3.3.1.7.48.  user45 1 1 1  1 1 

3.3.1.7.49.  user46 1 1 1  1 1 

3.3.1.7.50.  user47 1 1 1  1 1 

3.3.1.7.51.  user48 1 1 1  1 1 

3.3.1.7.52.  user49 1 1 1  1 1 

3.3.1.7.53.  user50 1 1 1  1 1 

3.3.2.  Domain       

3.3.2.1.  enumerate_domain_names 2 2 2  1 1 

3.3.2.2.  enumerate_domain_controllers 2 2 2  1 1 

3.3.2.3.  enumerate_domain_policies 8 8 8  1 1 

3.3.2.4.  enumerate_domain_groups 61 61 61  1 1 

3.3.2.5.  enumerate_domain_group_member
s 

      

3.3.2.5.1.  DnsUpdateProxy 0 0 0  1 1 

3.3.2.5.2.  Domain Admins 1 1 1  1 1 

3.3.2.5.3.  Domain Computers 0 0 0  1 1 

3.3.2.5.4.  Domain Controllers 2 2 2  1 1 

3.3.2.5.5.  Domain Guests 0 0 0  1 1 

3.3.2.5.6.  Domain Users 52 52 52  1 1 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 30 
 

Test # Case Real 
Positive 

(RP) 

Predicted 
Positive 

(PP) 

True 
Positive 

(TP) 

Comment Precision 
= TP/PP 

Recall 
= 

TP/RP 

3.3.2.5.7.  Enterprise Admins 1 1 1  1 1 

3.3.2.5.8.  Enterprise Read-only Domain 
Controllers 

0 0 0  1 1 

3.3.2.5.9.  Group Policy Creator Owners 1 1 1  1 1 

3.3.2.5.10.  Read-only Domain Controllers 0 0 0  1 1 

3.3.2.5.11.  Schema Admins 1 1 1  1 1 

3.3.2.5.12.  group1 10 10 10  1 1 

3.3.2.5.13.  group2 10 10 10  1 1 

3.3.2.5.14.  group3 10 10 10  1 1 

3.3.2.5.15.  group4 10 10 10  1 1 

3.3.2.5.16.  group5 10 10 10  1 1 

3.3.2.5.17.  group6 10 10 10  1 1 

3.3.2.5.18.  group7 10 10 10  1 1 

3.3.2.5.19.  group8 10 10 10  1 1 

3.3.2.5.20.  group9 10 10 10  1 1 

3.3.2.5.21.  group10 10 10 10  1 1 

3.3.2.5.22.  group11 10 10 10  1 1 

3.3.2.5.23.  group12 10 10 10  1 1 

3.3.2.5.24.  group13 10 10 10  1 1 

3.3.2.5.25.  group14 10 10 10  1 1 

3.3.2.5.26.  group15 10 10 10  1 1 

3.3.2.5.27.  group16 10 10 10  1 1 

3.3.2.5.28.  group17 10 10 10  1 1 

3.3.2.5.29.  group18 10 10 10  1 1 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 31 
 

Test # Case Real 
Positive 

(RP) 

Predicted 
Positive 

(PP) 

True 
Positive 

(TP) 

Comment Precision 
= TP/PP 

Recall 
= 

TP/RP 

3.3.2.5.30.  group19 10 10 10  1 1 

3.3.2.5.31.  group20 10 10 10  1 1 

3.3.2.5.32.  group21 10 10 10  1 1 

3.3.2.5.33.  group22 10 10 10  1 1 

3.3.2.5.34.  group23 10 10 10  1 1 

3.3.2.5.35.  group24 10 10 10  1 1 

3.3.2.5.36.  group25 10 10 10  1 1 

3.3.2.5.37.  group26 10 10 10  1 1 

3.3.2.5.38.  group27 10 10 10  1 1 

3.3.2.5.39.  group28 10 10 10  1 1 

3.3.2.5.40.  group29 10 10 10  1 1 

3.3.2.5.41.  group30 10 10 10  1 1 

3.3.2.5.42.  group31 10 10 10  1 1 

3.3.2.5.43.  group32 10 10 10  1 1 

3.3.2.5.44.  group33 10 10 10  1 1 

3.3.2.5.45.  group34 10 10 10  1 1 

3.3.2.5.46.  group35 10 10 10  1 1 

3.3.2.5.47.  group36 10 10 10  1 1 

3.3.2.5.48.  group37 10 10 10  1 1 

3.3.2.5.49.  group38 10 10 10  1 1 

3.3.2.5.50.  group39 10 10 10  1 1 

3.3.2.5.51.  group40 10 10 10  1 1 

3.3.2.5.52.  group41 10 10 10  1 1 

3.3.2.5.53.  group42 10 10 10  1 1 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 32 
 

Test # Case Real 
Positive 

(RP) 

Predicted 
Positive 

(PP) 

True 
Positive 

(TP) 

Comment Precision 
= TP/PP 

Recall 
= 

TP/RP 

3.3.2.5.54.  group43 10 10 10  1 1 

3.3.2.5.55.  group44 10 10 10  1 1 

3.3.2.5.56.  group45 10 10 10  1 1 

3.3.2.5.57.  group46 10 10 10  1 1 

3.3.2.5.58.  group47 10 10 10  1 1 

3.3.2.5.59.  group48 10 10 10  1 1 

3.3.2.5.60.  group49 10 10 10  1 1 

3.3.2.5.61.  group50 10 10 10  1 1 

3.3.2.6.  enumerate_users 53 53 53  1 1 

3.3.2.7.  enumerate_user_info     1  

3.3.2.7.1.  Administrator 29 27 27 Params and logon_hours not 
returned. 

1 0.931 

3.3.2.7.2.  Guest 29 27 27 1 0.931 

3.3.2.7.3.  krbtgt 29 27 27 1 0.931 

3.3.2.7.4.  user1 29 27 27 1 0.931 

3.3.2.7.5.  user2 29 27 27 1 0.931 

3.3.2.7.6.  user3 29 27 27 1 0.931 

3.3.2.7.7.  user4 29 27 27 1 0.931 

3.3.2.7.8.  user5 29 27 27 1 0.931 

3.3.2.7.9.  user6 29 27 27 1 0.931 

3.3.2.7.10.  user7 29 27 27 1 0.931 

3.3.2.7.11.  user8 29 27 27 1 0.931 

3.3.2.7.12.  user9 29 27 27 1 0.931 

3.3.2.7.13.  user10 29 27 27 1 0.931 

3.3.2.7.14.  user11 29 27 27 1 0.931 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 33 
 

Test # Case Real 
Positive 

(RP) 

Predicted 
Positive 

(PP) 

True 
Positive 

(TP) 

Comment Precision 
= TP/PP 

Recall 
= 

TP/RP 

3.3.2.7.15.  user12 29 27 27 1 0.931 

3.3.2.7.16.  user13 29 27 27 1 0.931 

3.3.2.7.17.  user14 29 27 27 1 0.931 

3.3.2.7.18.  user15 29 27 27 1 0.931 

3.3.2.7.19.  user16 29 27 27 1 0.931 

3.3.2.7.20.  user17 29 27 27 1 0.931 

3.3.2.7.21.  user18 29 27 27 1 0.931 

3.3.2.7.22.  user19 29 27 27 1 0.931 

3.3.2.7.23.  user20 29 27 27 1 0.931 

3.3.2.7.24.  user21 29 27 27 1 0.931 

3.3.2.7.25.  user22 29 27 27 1 0.931 

3.3.2.7.26.  user23 29 27 27 1 0.931 

3.3.2.7.27.  user24 29 27 27 1 0.931 

3.3.2.7.28.  user25 29 27 27 1 0.931 

3.3.2.7.29.  user26 29 27 27 1 0.931 

3.3.2.7.30.  user27 29 27 27 1 0.931 

3.3.2.7.31.  user28 29 27 27 1 0.931 

3.3.2.7.32.  user29 29 27 27 1 0.931 

3.3.2.7.33.  user30 29 27 27 1 0.931 

3.3.2.7.34.  user31 29 27 27 1 0.931 

3.3.2.7.35.  user32 29 27 27 1 0.931 

3.3.2.7.36.  user33 29 27 27 1 0.931 

3.3.2.7.37.  user34 29 27 27 1 0.931 

3.3.2.7.38.  user35 29 27 27 1 0.931 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 34 
 

Test # Case Real 
Positive 

(RP) 

Predicted 
Positive 

(PP) 

True 
Positive 

(TP) 

Comment Precision 
= TP/PP 

Recall 
= 

TP/RP 

3.3.2.7.39.  user36 29 27 27 1 0.931 

3.3.2.7.40.  user37 29 27 27 1 0.931 

3.3.2.7.41.  user38 29 27 27 1 0.931 

3.3.2.7.42.  user39 29 27 27 1 0.931 

3.3.2.7.43.  user40 29 27 27 1 0.931 

3.3.2.7.44.  user41 29 27 27 1 0.931 

3.3.2.7.45.  user42 29 27 27 1 0.931 

3.3.2.7.46.  user43 29 27 27 1 0.931 

3.3.2.7.47.  user44 29 27 27 1 0.931 

3.3.2.7.48.  user45 29 27 27 1 0.931 

3.3.2.7.49.  user46 29 27 27 1 0.931 

3.3.2.7.50.  user47 29 27 27 1 0.931 

3.3.2.7.51.  user48 29 27 27 1 0.931 

3.3.2.7.52.  user49 29 27 27 1 0.931 

3.3.2.7.53.  user50 29 27 27 1 0.931 

3.3.2.8.  enumerate_group_membership       

3.3.2.8.1.  Administrator 5 5 5  1 1 

3.3.2.8.2.  Guest 1 1 1  1 1 

3.3.2.8.3.  krbtgt 1 1 1  1 1 

3.3.2.8.4.  user1 11 11 11  1 1 

3.3.2.8.5.  user2 11 11 11  1 1 

3.3.2.8.6.  user3 11 11 11  1 1 

3.3.2.8.7.  user4 11 11 11  1 1 

3.3.2.8.8.  user5 11 11 11  1 1 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 35 
 

Test # Case Real 
Positive 

(RP) 

Predicted 
Positive 

(PP) 

True 
Positive 

(TP) 

Comment Precision 
= TP/PP 

Recall 
= 

TP/RP 

3.3.2.8.9.  user6 11 11 11  1 1 

3.3.2.8.10.  user7 11 11 11  1 1 

3.3.2.8.11.  user8 11 11 11  1 1 

3.3.2.8.12.  user9 11 11 11  1 1 

3.3.2.8.13.  user10 11 11 11  1 1 

3.3.2.8.14.  user11 11 11 11  1 1 

3.3.2.8.15.  user12 11 11 11  1 1 

3.3.2.8.16.  user13 11 11 11  1 1 

3.3.2.8.17.  user14 11 11 11  1 1 

3.3.2.8.18.  user15 11 11 11  1 1 

3.3.2.8.19.  user16 11 11 11  1 1 

3.3.2.8.20.  user17 11 11 11  1 1 

3.3.2.8.21.  user18 11 11 11  1 1 

3.3.2.8.22.  user19 11 11 11  1 1 

3.3.2.8.23.  user20 11 11 11  1 1 

3.3.2.8.24.  user21 11 11 11  1 1 

3.3.2.8.25.  user22 11 11 11  1 1 

3.3.2.8.26.  user23 11 11 11  1 1 

3.3.2.8.27.  user24 11 11 11  1 1 

3.3.2.8.28.  user25 11 11 11  1 1 

3.3.2.8.29.  user26 11 11 11  1 1 

3.3.2.8.30.  user27 11 11 11  1 1 

3.3.2.8.31.  user28 11 11 11  1 1 

3.3.2.8.32.  user29 11 11 11  1 1 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Test Results Page 36 
 

Test # Case Real 
Positive 

(RP) 

Predicted 
Positive 

(PP) 

True 
Positive 

(TP) 

Comment Precision 
= TP/PP 

Recall 
= 

TP/RP 

3.3.2.8.33.  user30 11 11 11  1 1 

3.3.2.8.34.  user31 11 11 11  1 1 

3.3.2.8.35.  user32 11 11 11  1 1 

3.3.2.8.36.  user33 11 11 11  1 1 

3.3.2.8.37.  user34 11 11 11  1 1 

3.3.2.8.38.  user35 11 11 11  1 1 

3.3.2.8.39.  user36 11 11 11  1 1 

3.3.2.8.40.  user37 11 11 11  1 1 

3.3.2.8.41.  user38 11 11 11  1 1 

3.3.2.8.42.  user39 11 11 11  1 1 

3.3.2.8.43.  user40 11 11 11  1 1 

3.3.2.8.44.  user41 11 11 11  1 1 

3.3.2.8.45.  user42 11 11 11  1 1 

3.3.2.8.46.  user43 11 11 11  1 1 

3.3.2.8.47.  user44 11 11 11  1 1 

3.3.2.8.48.  user45 11 11 11  1 1 

3.3.2.8.49.  user46 11 11 11  1 1 

3.3.2.8.50.  user47 11 11 11  1 1 

3.3.2.8.51.  user48 11 11 11  1 1 

3.3.2.8.52.  user49 11 11 11  1 1 

3.3.2.8.53.  user50 11 11 11  1 1 



Nettynum – A Windows Domain Enumeration Tool 

Oliver Morton Beta Testing Feedback Page 1 
 

Appendix F: Beta Testing Feedback 

The following feedback is indicative of that received from the Beta testers. Note 

most communication was through informal channels and very little was in a written 

form. 

 

The nettynum tool has proven to be very useful and practical for internal network 
penetration testing, since it combines in a novel way many related probes and 
features that are cumbersome to integrate with existing tools.  It would be good to 
have some Linux portability too, to allow wider integration into penetration testing 
systems, though the code design lends itself well to this functionality being added at 
a later stage. 

Dr N Blundell (Chief Software Architect, Sec-1 Ltd) 

 

[03/04/2014 14:17:57] Richard Jones: Coupla issues re layout  
[03/04/2014 14:18:35] Richard Jones: It may be my browser (IE) but when I click on 
a + to expand, it keeps jumping to the top of the document 
[03/04/2014 14:19:16] Richard Jones: and I think I personally would prefer it in 
more of a table format, than a list with +'s 
… 
[03/04/2014 14:25:38] Richard Jones: It does look good though dude, nice work 
fella! 
[03/04/2014 14:25:55] Richard Jones: Think it's gonna be really handy on internals ;) 
… 
 [03/04/2014 14:36:25] Richard Jones: Error handling is the first comment I'd make 
;) 
… 
[03/04/2014 14:41:24] Richard Jones: … it looks pretty nicely laid out and 
commented, so yeah, lookin good dude! 
 

[03/04/2014 09:58:24] Matthew Hall: for me - needs pywin32 so sort of stopped 
trying to install it under linux there ;) 
… 
[03/04/2014 10:05:48] Matthew Hall: ill see if I can get it working in my win vm 
[03/04/2014 10:14:56] Matthew Hall: ok - feedback 1 : convert the password ages 
from integer/decimals to human readable (max password age 7776000 is 36 days?) 
… 
[03/04/2014 10:18:50] Matthew Hall: pretty useful tool tho olly. have you thought 
about a greppable output? 


